[ English ]
Калинкин Александр Вячеславович,
доктор физико-математических наук, профессор
Кафедра высшей математики МГТУ им. Н.Э.Баумана.
Россия, 105005 Москва, 2-я Бауманская улица, дом 5. Московский
государственный технический университет им. Н.Э.Баумана
kalinkin@bmstu.ru
Учебные программы
Учебные и методические пособия
- Основные понятия теории кривых. М.: Мосстанкин, 1993. 52 с.
- Алгоритмы на графах. М.: МГТУ им. Н.Э.Баумана,
1995. 24 с. Соавтор Исмагилов Р.С.
- Комбинаторика
и булевы функции. М.: Изд-во МГТУ
им. Н.Э.Баумана, 1998. 40 с. Соавторы Исмагилов Р.С., Станцо В.В.
- Элементы математического
программирования. М.: МГТУ им. Н.Э.Баумана, 1999. 24 с. Соавтор
Исмагилов Р.С.
- Графы. М.: Изд-во
МГТУ им. Н.Э.Баумана, 1999. 40 с. Соавторы Исмагилов Р.С., Станцо В.В.
- Случайные процессы в естествознании:
Дискретное фазовое пространство. М.: МГТУ им.
Н.Э.Баумана, 1999. 40 с.
- Нелинейное и динамическое программирование. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2007. 42 с. Соавторы Исмагилов Р.С., Станцо В.В.
programm.pdf
- Математическая логика. Нечеткие множества и формальные системы. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2008. 32 с. Соавтор Титов А.В.
logika.pdf
- Схемы взаимодействий:
Детерминированные и стохастические модели. М.: Изд-во МГТУ им.
Н.Э.Баумана, 2009. 44 с. interaction.pdf
- Вариационное исчисление. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2010. 56 с. Соавторы Паршев Л.П., Мастихин А.В.
variation.pdf
- Уравнения в частных производных первого порядка. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2011. 28 с. Соавтор Паршев Л.П.
equation.pdf
- Основы математической теории надежности. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2017. 56 с. Соавтор Павлов И.В.
https://bmstu.press/catalog/item/4757/ reliability.pdf
- Статистическое моделирование дискретных марковских систем с взаимодействием. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2017. 44 с.
https://bmstu.press/catalog/item/4847/ interaction2.pdf
- Основы тензорной алгебры. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2021. 64 с. Соавтор Неклюдов А.В.
https://bmstu.press/catalog/item/7296/ tensors.pdf
- Метод разделения переменных для уравнений гиперболического и параболического типов. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2021. 52 с. Соавтор Неклюдов А.В.
https://bmstu.press/catalog/item/7297/ equation2.pdf
- Элементы теории массового обслуживания и сети Джексона. М.: Изд-во
МГТУ им. Н.Э.Баумана, 2025. 57 с. Соавтор Павлов И.В. В печати.
Дипломные проекты
- Демидов С.А. Статистическое
моделирование процесса эпидемии при дискретных состояниях.
Дипломная работа. М.: МГТУ им. Н.Э.Баумана, 1999. 108 с.
- Стрыгина Л.А. Статистическое
моделирование процесса "хищник-жертва" при
дискретных состояниях. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 1999. 95 с.
- Пиляева Н.В. Аналитическое исследование
марковской модели реакции
последовательного типа. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2001. 97 с.
diplom_3.ps
- Ланге А.М. Исследование марковских моделей открытых систем
с взаимодействием частиц. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2002. 72 с.
diplom_4.ps
- Сагайдина А.С. Статистическая модель распостранения инфекции с двумя
стадиями заболевания. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2004. 132 с.
- Шапошников А.А. Статистическое моделирование брюсселятора при дискретных
состояниях. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2004. 129 с.
- Анастасиев А.С. Решение уравнений ветвящихся процессов
и специальные функции. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2005. 82 с.
diplom_7.ps
- Файзуллина Е.Т. Статистическое моделирование процесса эпидемии с приобретением
иммунитета. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2005. 126 с.
- Белякова О.А. Стохастические модели взаимодействия двух видов
и результаты экспериментов Г.Ф.Гаузе. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2006. 78 с.
- Лисицина М.В. Марковские системы массового обслуживания с подвижными
приборами. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2006. 84 с.
diplom_10.pdf
- Валентьева В.А. Детерминированные и стохастические модели периодической эпидемии. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2007. 121 с.
- Туркина Л.В. Решение уравнений Колмогорова для марковских процессов рождения квадратичного типа. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2008. 99 с.
- Первухин А.А. Сравнение стохастических и детерминированных моделей для схем взаимодействий частиц. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2008. 100 с.
- Смирнов В.Д. Статистическое моделирование дискретных марковских процессов эпидемии с иммиграцией. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2009. 83 с.
- Гайдуков В.О. Статистическое моделирование двойной эпидемии Беккера. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2011. 94 с.
- Кривцов С.А. Дискретные статистические модели эпидемии с размножением переносчиков и двустадийной эпидемии. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2013. - 92 с.
- Кульжанова А.Е. Финальные вероятности некоторых процессов рождения и гибели полиномиального типа.
Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2013. - 93 с.
- Лаврентьев В.Д. Спектральные представления переходных вероятностей критических марковских ветвящихся процессов.
Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2013. - 86 с.
- Самченко Т.В. Вероятности остановки на границе случайного блуждания в полуполосе. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2013. - 114 с.
- Кудряшов С.С. Стохастические аналоги основных детерминированных моделей эпидемии. Дипломная работа. М.: МГТУ
им. Н.Э.Баумана, 2014. - 115 с.
- Минаков А.И. Статистическое моделирование квазистационарных распределений в марковских
процессах с дискретными состояниями. Дипломная работа. М.: МГТУ им. Н.Э.Баумана, 2016. - 85 с.
- Смирнов А.В. Финальные вероятности некоторых многомерных марковских процессов гибели
линейного и квадратичного типов. М.: МГТУ им. Н.Э.Баумана, 2016. - 128 с.
- Михайлин А.С. Статистическое моделирование финальных распределений для марковских процессов с парными взаимодействиями.
М.: МГТУ им. Н.Э.Баумана, 2019. - 59 с.
- Степанова М.А. Аналитические представления переходных вероятностей для некоторых двумерных марковских процессов.
Дипломная работа. М.: МГТУ им. Н.Э.Баумана, 2019. - 58 с.
- Домашенко С.С. Спектральное представление переходных вероятностей для марковского процесса эпидемии.
Дипломная работа. М.: МГТУ им. Н.Э.Баумана, 2020. - 87 с.
- Тарасюк Ю.В. Применение символьных вычислителей при решении смешанных задач
для уравнений колебаний и теплопроводности.
Дипломная работа. М.: МГТУ им. Н.Э.Баумана, 2020. - 79 с.
- Уракова К.А. Переходные вероятности двухмерного марковского процесса гибели и перманенты.
Дипломная работа. М.: МГТУ им. Н.Э.Баумана, 2021. - 72 с.
Кандидатские диссертации
- Ланге А.М. Методы расчета и моделирование дискретных стохастических систем
с парными взаимодействиями. Автореферат диссертации на соискание ученой степени
кандидата физико-математических наук. М.: МГТУ им.
Н.Э.Баумана, 2007. 16 с.
abstract.pdf
- Мастихин А.В. Финальные вероятности марковских процессов эпидемии. Автореферат диссертации на соискание ученой степени
кандидата физико-математических наук. М.: МИЭМ, 2011. 19 с.
abstract2.pdf
- Для студентов, обучающихся по специальности "Прикладная
математика":
- Работа семинара "Марковские процессы с дискретными состояниями
и их приложения"
- Лекция по основаниям теории марковских
процессов
- Программа экзамена по дополнительным
главам теории случайных процессов.
- Темы выполненных курсовых проектов
-
- Страница на сайте факультета ФН
- Премии факультета ФН
-
- Приезд в МГТУ им. Н.Э.Баумана Девида Серла
- Поездки А.М.Ланге в университеты Брисбена, Мельбурна и Гетеборга
-
-
Свободный доступ к полным текстам статей математических журналов РАН
-
zbMATH database
-
MathSciNet (Mathematical Reviews)
-
The Probability Web
-
Statistical Science Web
На страницу МГТУ им. Н.Э.Баумана