|
|
|
||||
Кинематика сложного движения точки
В задачах курсовых заданий на сложное движение точки применяются теоремы о сложении скоростей и ускорений, и студенты обучаются методам вычисления скоростей и ускорений точек с помощью этих теорем. Условно задачи на сложное движение точки можно представить как задачи двух видов – «прямые» и «обратные». В прямых задачах по известному закону относительного движения точки и параметрам переносного движения требуется найти абсолютные скорость и ускорение точки. Эти задачи студенты, как правило, быстро воспринимают и умеют хорошо решать. К «обратным» можно отнести те задачи, в которых известна абсолютная траектория точки. Требуется найти кинематические характеристики, оставшиеся неизвестными в абсолютном, относительном или переносном движениях. Такие задачи вызывают у студентов много вопросов и решаются хуже, чем «прямые». Поэтому в заданиях для студентов долго преобладали «прямые» задачи. Методика решения «прямых» задач с переносными вращательным и поступательным движениями изложена в учебном пособии «Решение задач по кинематике» Л. Г. Тихоновой и Т. И. Гориной (Изд. МВТУ, 1967) В В «прямых» задачах использованы как традиционные в то время схемы с переносным вращательным движением (рис. 1) (см. «Сборник заданий для курсовых работ по теоретической механике под ред. А. А. Яблонского. – М.: Высшая школа, 1972), так и задачи с переносным плоским движением – их еще только две. В «обратных» задачах представлено несколько схем кулисных механизмов, обращенного эллиптического циркуля, а также задачи, которые показаны на рис. 2. Кольцо
М
(материальная точка), надетое на стержень
ОА, движется по траектории
m – m
в плоскости
хОу, вращая стержень вокруг
оси
O(z).
Заданы уравнения движения точки
M
x=x(t),
y=y(t), задано ее начальное положение (при
t=0). Требуется определить при
t=t1
угловые скорость и
ускорение стержня
ОА, а также относительные (по
отношению к стержню) скорость и ускорение точки
М. Методика решения такого
вида задач (рис. 2), а также решение «прямых» задач содержатся в
методических указаниях по выполнению этого задания (Е. С. Веселый, П. В. Занозин, Л. Е. Ефремова, Б. А. Бурмистров «Статика – кинематика», изд.
МВТУ, 1974). В это же время изданы и методические указания для студентов
вечернего факультета, содержащие исключительно «прямые» задачи с
переносным вращательным движением с подробными пояснениями и примерами
решения ( В Здесь из 72-х задач 11 включали звенья с плоским движением как в «прямых» (рис. 3), так и в «обратных» задачах (рис. 4). По заказу министерства высшего образования СССР
через НПО «Союз-вузприбор» в Обобщением накопленного опыта по методике решения
задач явились «Методические указания к выполнению курсовой работы и
решению задач по теме «Кинематика сложного движения точки», изданные в
Качественно новый подход к структуре вариантов
задания по сложному движению точки содержится в методических указаниях,
изданных в Схема каждого из 32-х вариантов теперь представляет собой комплекс из двух задач – из «прямой» для точки М и «обратной» для точки D. В большинстве вариантов сначала решается «обратная» задача – при известном абсолютном движении точки D механизма получить угловые скорость и ускорение звена, несущего на себе подвижную точку М (рис. 5). Затем рассматривается «прямая» задача, в которой определяются абсолютные скорость и ускорение точки М, относительное движение которой задано. Часть задач (рис. 6) решается в любом порядке. Для промежуточного контроля знаний студентов в
В Больше половины схем вариантов – новые задачи. По-прежнему, для точки D решается «обратная» задача, а затем для точки М – «прямая» (рис. 7). Введены задачи «обратного» типа, в которых назначается подвижная система отсчета и требуется найти относительные скорость и ускорение точки D(2) (звено 2) относительно звена 1, с которым связана подвижная система отсчета. Так, в планетарном механизме (рис. 8) кривошип 1, вращаясь вокруг оси О1(z) неподвижной шестерни 3, приводит в движение шестеренку 2. Связав с кривошипом 1 подвижную систему отсчета хО1у , нужно найти для точки D(2) шестерни 2 относительные скорость и ускорение. Для точки М, которая движется вдоль паза 4 на шестерне 2, задано относительное движение, требуется найти абсолютные скорость и ускорение. Предусмотрено выполнение каждого варианта задания с помощью ЭВМ – для разных положений механизма можно в диапазоне времени 0 ≤ t ≤ 1 с получить характеристики относительного, переносного и абсолютного движений точек М и D. В В последние годы на кафедре проводится работа по составлению задачника для подготовки студентов к олимпиадам по теоретической механике. В разделе «Сложное движение точки» систематизированы и разобраны наиболее интересные задачи прошедших олимпиад. В задачнике представлены и короткие задачи, которые, как известно, очень эффективно используются в учебных и контрольных целях (Тушева Г. М.). На рис. 9 в механизме шарнирного четырехзвенника кривошип 1 вращается с угловой скоростью w1=w, O1A=AB=l. Связав подвижную систему отсчета с кривошипом 1, найти для заданного положения механизма кориолисово ускорение точки В звена 2. На рис. 10 круговой конус с прямым углом при вершине и радиусом основания, равным R, катится без скольжения по горизонтальной плоскости так, что скорость центра его основания vc=v. По ободу основания конуса движется точка М со скоростью u. Найти величину кориолисова ускорения для заданного положения точки М.
|
||||||
|
||||||
|
|
|
||||
|
|