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Markov branching processes with interaction

A. V. Kalinkin

Abstract. In the paper we consider Markov processes, with countable set of states,
interpreted as systems of particles of several types that interact as complexes for
which the result of interaction with a complex of particles does not depend on the
presence of other particles in the system. The apparatus of multivariate generating
functions is used to find exact closed solutions of the first and second Kolmogorov
system of differential equations for the transition probabilities. In our examples
analytic methods are used to treat actual transmutation processes of particles in
diverse areas of science.
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Introduction

(1) Differential equations remain the basic mathematical apparatus of modern
science. The consideration of deterministic processes or changes in the macroscopic
characteristics of physical phenomena in the course of time is a condition for appli-
cability of this technique.
Probabilistic considerations arose in science in the second half of the nineteenth

century and developed under the microscopic approach to physical processes, first
of all in gases and chemical reactions. The molecular-kinetic theory considers, say,
a gas as an aggregate of a vast number of chaotically moving particles (molecules,
atoms, and so on) interacting with one another; the interaction takes place through
collision of particles or by means of diverse forces. The basic conditions imposed
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on the probabilistic approach were clarified, and the primary task can be formu-
lated as follows: assuming that the laws regulating the behaviour of the particles
forming the system are known, the problem is to establish the laws of behaviour
of a macroscopic amount of matter by passing to the limit of a large number of
particles, in particular, to establish the phenomenological laws connecting directly
observable quantities (pressure, volume, concentration of reagents, and so on) [102].
A number of physical experiments carried out in the first third of the twentieth
century proved the probabilistic nature of the microcosm, which finally led to the
understanding that an adequate mathematical apparatus had to be constructed.
“After the molecular viewpoint about the structure of matter became prevalent in
physics, the appearance of new statistical (or probabilistic) methods of investigation
in physical theories became inevitable” ([65], Russian p. 7).
The problem of constructing the foundations of the theory of stochastic processes

was solved in the 1930s and 40s, mainly by Soviet mathematicians. The subsequent
development of the theory of stochastic processes has been associated in large degree
with the study of probability-theoretic schemes introduced in this period.
The application of probabilistic approaches to the study of processes in nature

was characterized by a gradual passage from deterministic mechanistic concepts
to probabilistic ideas. Originally, the equations of mechanics were supplemented by
probabilistic hypotheses that were alien to mechanics itself (see the analysis of the
Boltzmann kinetic equation in [79]). The subsequent success in the description of
physical processes by the new methods involved the rejection of some deterministic
concepts and the introduction of probabilistic definitions. Mathematical schemes
of the theory of stochastic processes are completely free of the mechanistic assump-
tions, and this can explain both the universal applicability of these schemes in
diverse areas of science and the depth of the analytic methods developed for them.
These probability-theoretic schemes are based on the notion of a probability space
(Ω,A,P) of events.
The progress achieved during the last decades in understanding the nature of

the microcosm and the appearance of tools for investigating the molecular struc-
ture of matter led to the practical necessity of mathematically describing specific
microscopic processes. Fairly many non-rigorously defined models (meeting the
requirements for narrow classes of physical phenomena) were introduced in which
elements of the deterministic and probabilistic approaches were combined. These
models are frequently incompatible with the notion of a space of events; moreover,
they are limited in the application of analytic methods. Models based on classi-
cal probability-theoretic schemes involving some notions of mechanical origin have
also been investigated (for instance, when describing an interaction, the poten-
tial is sometimes replaced by a random potential [17], random forces are defined,
and so on). In these models the passage to the limit in probabilistic schemes can
lead to deterministic relationships. Some difficulties in applications indicate the
incompleteness of the theory of stochastic processes; in particular, the necessity
of introducing an interaction in probability-theoretic schemes has been repeatedly
noted [110].
The development of the theory of stochastic processes has been determined by the

fundamental concepts of the theory and by consideration of the above fundamental
problems on this basis (though the physical knowledge that serves as a basis for
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the probabilistic approach in science is insufficient at present). The objective of
this paper is to show that possible steps in this direction can be based on the
probability-theoretic schemes of the initial period of development of the theory of
stochastic processes and on the existing analytic methods of the theory.
(2) In this paper we consider a generalization of Markov birth-and-death pro-

cesses with countable state space Nn (N = {0, 1, 2, . . .}) and with continuous time
t ∈ [0,∞), which were introduced in [79], [104]. A point α = (α1, . . . , αn) ∈ Nn of
the state space is interpreted as a state of some physical system in which there is an
aggregate of particles Sα = α1T1 + · · ·+ αnTn that consists of α1 particles of type
T1, . . . , and αn particles of type Tn; a passage of the stochastic process to another
state is a result of interaction within some complex Sεi , ε

i ∈ A, of particles, where
A = {ε1, . . . , εl} ⊂ Nn is a given set. Such processes simulate a broad class of
actual systems of interacting particles in physics, chemistry, and biology in which
new particles appear as the result of interaction of several particles that exist at a
given instant.
The general definition of Markov processes with interaction for a discrete state

space has arisen by comparing several lines of research connected by a sequence of
references [45]:

Kolmogorov [69], 1938 (1931)

Leontovich [79], 1935

Bogolyubov [13], 1946 Kolmogorov and Dmitriev [71], 1947

Sevast’yanov [104], 1949

Sevast’yanov [105], 1951

(0.1)

The interactions between the above papers are considered in Chapter 5 of the
survey from the point of view of the following set of notions that arose in the study
of probability-theoretic schemes introduced in (0.1): one-particle and many-particle
distribution functions, independence conditions, the symmetry of distribution func-
tions, the definition of interaction in terms of the independence conditions, a chain
of equations, the state space of trajectories, and the kinetic equation for one-particle
distribution functions. In the author’s opinion (see [49], [50]), the analysis of the
family of these notions in connection with Markov processes leads to the possibility
of a certain step in the evolution of the theory of stochastic processes that is a
consequence of the scheme (0.1). To support this, we construct explicit solutions
of the Kolmogorov linear equations for Markov processes (see [46], [56]).
In this paper we present both known solutions of the Kolmogorov equations

and new solutions. Markov branching processes with interaction are character-
ized by the application of generating functions to express the equations for the
transition probabilities in the form of partial differential equations. The above
results and statements of problems are aimed at deriving closed solutions of these
partial differential equations. In the solution of the non-stationary and station-
ary Kolmogorov equations, expressions are obtained for the generating functions
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of the desired probabilities in the form of series in special functions, and the main
analytic complications have to do with summation of these series. The reduction of
series to a closed form gives an integral representation for the generating functions
in which the integrands are represented in a form having a probabilistic interpreta-
tion. We use orthogonal polynomials ([46], [47], [61], [62]), Bessel functions ([43],
[46]), hypergeometric functions ([44], [59], [62]), and elliptic functions ([51], [61]).
Closed solutions of the Kolmogorov equations give simple proofs of certain limit

theorems for Markov processes. Examples of limit theorems of this kind are pre-
sented in this paper.
The paper consists of five chapters. Every chapter is prefaced by a brief descrip-

tion of its contents. Chapter 1 contains the derivation of the main equations and
forms a basis for the subsequent chapters. The exposition in each of the next three
Chapters 2, 3, and 4 is independent of that in the other two chapters; the consider-
ations in Chapter 5 are based on the results of Chapter 4. Chapters 2 and 5 are of
a survey nature, whereas Chapters 3 and 4 are based on results of the author. We
present proofs of theorems announced in our short communications [50], [48], [40]
and give some new results.
The author thanks B. A. Sevast’yanov for stating the problem on branching

processes with interaction, to Ya. G. Sinai for the proposal to write this paper, and
to A. M. Zubkov and V. A. Malyshev for a series of remarks that helped improve
the paper.

CHAPTER I

SPECIAL CLASSES OF MARKOV PROCESSES

The notion of special classes of Markov processes was introduced in [71], [104].
The class B1 of branching processes was introduced in [71], and the class B2 of
branching processes with interaction was introduced in [104], where the relation

M ⊃ B2 ⊃ B1 (1.1)

was noted (here M stands for the set of all Markov processes with states in Nn).
The relation (1.1) is called the structure of the set of Markov processes with the
state space Nn.
The material of § 1.1 and § 1.2 is of a preliminary nature. In §§ 1.3–1.6 we present

the definitions of the classes B1 and B2 and some other special classes of homoge-
neous Markov processes with countable state space and continuous time. We give a
complete and systematic presentation (see also § 2.1) of representations of the first
and second Kolmogorov systems of partial differential equations for the transition
probabilities with the help of multivariate generating functions and the operator
of generalized differentiation (these results were partially published in [107], [108]).
Corresponding to any class is a certain form of such partial differential equations.
In § 1.7 we give a generalization of the structure (1.1). The results of Chapter 1
show that analytic methods for studying branching processes of class B1 [106] can
be extended to other classes of Markov processes.

§ 1.1. Markov processes on the state space NnNnNn

We denote by Nn = {α = (α1, . . . , αn), αi = 0, 1, 2, . . ., i = 1, . . . , n} the set of
all n-dimensional vectors with non-negative integral components. For α, β, γ ∈ Nn
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we write γ = α − β if γ1 = α1 − β1, . . . , γn = αn − βn, α � β if α1 � β1, . . . ,
αn � βn, and so on; we also set |α| = α1 + · · ·+ αn and denote the summation∑
α∈Nn by

∑
α.

Let us list the main results of the theory of homogeneous Markov processes with
countable state space ([30], Chap. 7, § 3, [18]). Let ξ(t) = (ξ1(t), . . . , ξn(t)) be a
Markov process on the set Nn with continuous time t ∈ [0,∞). We denote the
transition probabilities by

Pαβ(t) = P{ξ(t) = β | ξ(0) = α}, α, β ∈ Nn.

The condition that the process be time homogeneous means that

P{ξ(t1 + t) = β | ξ(t1) = α} = P{ξ(t) = β | ξ(0) = α}

for any α, β ∈ Nn and t1, t ∈ [0,∞). The transition probabilities of the process
ξ(t) satisfy the following conditions: Pαβ(t) � 0 for any α, β ∈ Nn, t ∈ [0,∞)
(non-negativity condition);

∑
β Pαβ(t) = 1 for any α ∈ Nn, t ∈ [0,∞) (scaling

condition);

Pαβ(t) =
∑
γ

Pαγ(t1)Pγβ(t − t1)

for any α, β ∈ Nn and 0 � t1 � t, t1, t ∈ [0,∞) (Markov property); Pαα(0) = 1 and
Pαβ(0) = 0 (α �= β) for any α, β ∈ Nn (initial condition). It is assumed that the
process ξ(t) is stochastically continuous, that is, the conditions limt→0+ Pαα(t) = 1
and limt→0+ Pαβ(t) = 0 hold for any α �= β.
The following limits (which can be finite or infinite) always exist:

aαα = lim
t→0+

Pαα(t) − 1
t

, aαβ = lim
t→0+

Pαβ(t)

t
(α �= β), α, β ∈ Nn.

These limits are called the infinitesimal characteristics (or the densities of the
transition probabilities) and are denoted by aαβ = (dPαβ(t)/dt)|t=0+ for α, β ∈ Nn.
If α �= β, then aαβ is finite; aαα is either finite or equal to −∞; in any case∑
β �=α aαβ � −aαα. A classification of the states of the process can be carried out

by using the quantities aαβ. A state α is said to be instantaneous if aαα = −∞. A
non-instantaneous state is said to be regular if

∑
β �=α aαβ = −aαα.

The probabilistic meaning of the characteristics {aαβ, α, β ∈ Nn} is as follows.
The Markov process ξ(t) stays in an initial state α up to a random time τα with
exponential distribution P{τα � t} = 1−eaααt. If aαα = 0, then the process cannot
leave the state α (such a state is said to be absorbing). If aαα < 0, then at the
time τα the process goes to a state β with probability distribution {pαβ = −aαβ/aαα,
β �= α; pαα = 0}; the process stays in the state β for a random time τβ ; and the
further evolution of the process is similar.

1.1.1. First and second Kolmogorov systems of differential equations. If
all states of a Markov process are regular, then the transition probabilities satisfy
the system of equations

dPαβ(t)

dt
=
∑
γ

aαγPγβ(t), α ∈ Nn, (1.2)
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with the initial conditions Pαα(0) = 1 and Pαβ(0) = 0 for α �= β. This is called the
first (backward) Kolmogorov system of differential equations [69]. Let all states of
the Markov process be regular and let

∑
γ Pαγ(t)aγγ > −∞ for a given α. Then for

this α the second (forward) Kolmogorov system of differential equations [69] holds
for the transition probabilities:

dPαβ(t)

dt
=
∑
γ

Pαγ(t) aγβ , β ∈ Nn, (1.3)

with the initial conditions Pαα(0) = 1 and Pαβ(0) = 0 for α �= β.
Existence and uniqueness conditions for the solutions of the first and second

system of equations are given in [26] (vol. 1, Chap. 17, § 9), [30], [18]. Under the
above assumptions on the coefficients aαβ there always exists a unique minimal
solution, that is, a non-negative solution satisfying both systems of differential
equations (1.2) and (1.3), the Markov condition, and the relation

∑
β Pαβ(t) � 1.

In particular, the minimal solution satisfies the identity
∑
β Pαβ(t) ≡ 1 for any

α ∈ Nn if the coefficients are bounded, that is, |aαβ| < C < ∞ for any α, β ∈ Nn
[26]. Below we consider some Kolmogorov systems of equations for which a solution
is not unique; in these cases we present an expression for the minimal solution.

§ 1.2. Multivariate generating functions
We denote by aα the value at a point α of a numerical function a defined on N

n.
By the multivariate generating function F (s1, . . . , sn) corresponding to {aα} we
mean the sum of the series

F (s1, . . . , sn) =
∑
α

aαs
α1
1 · · ·sαnn .

By the exponential multivariate generating function G(z1, . . . , zn) corresponding to
{aα} we mean the sum of the series

G(z1, . . . , zn) =
∑
α

zα11 · · ·zαnn
α1! · · ·αn!

aα.

Below we also write briefly s = (s1, . . . , sn), s
α = sα11 · · ·sαnn , and α! =

α1! · · ·αn!. A vector of the form s = (s1, . . . , sn) is denoted by 1 if all its com-
ponents are equal to 1; we write |s| for the vector with the components |si| and use
similar notation for a vector z = (z1, . . . , zn). We set zs = z1s1 + · · ·+ znsn and
write

∂αF (s)

∂sα
=
∂|α|F (s1, . . . , sn)

∂sα11 · · ·∂sαnn
and α[β] = α

[β1]
1 · · ·α[βn]n , where α

[βi]
i = αi(αi − 1) · · · (αi − βi + 1) for i = 1, . . . , n.

If F (s) is the generating function for {aα}, then ∂βF (s)/∂sβ is the generating
function for {α[β]aα, α ∈ Nn}. Let the generating functions F (s) and G(z) have
non-empty domains of convergence. Then a one-to-one correspondence between the
family {aα} and each of the functions F (s) and G(z) is given by

aα =
1

α!

∂αF (0)

∂sα
, aα =

∂αG(0)

∂zα
.



248 A. V. Kalinkin

A generating function is said to be positive if aα � 0 for α ∈ Nn. A positive
generating function F (s) is called a probability generating function if F (1) = 1.
A probability generating function F (s) corresponds to some probability distri-
bution {aα} on Nn. A probability generating function can be assigned not only
to a distribution {aα} but also to a random vector ξ = (ξ1, . . . , ξn) whose probabil-
ity distribution is {aα}. Using the vector ξ, we can give an equivalent distribution
of a probability generating function, namely, Fξ(s) = Esξ. The expectation Eξ[β] is
called the factorial moment of order |β| = β1 + · · ·+ βn. It can be shown that

Eξ[β] =
∂βFξ(1)

∂sβ
, (1.4)

where the derivative at the point s = 1 is understood as the left derivative with
respect to all the coordinates si, i = 1, . . . , n. In particular, Eξi = (∂Fξ(s)/∂si)|s=1
for the expectations of the components of the random vector ξ, i = 1, . . . , n. The
expression for the variance is

Dξi =
∂2Fξ(1)

∂s2i
+
∂Fξ(1)

∂si
−
(
∂Fξ(1)

∂si

)2
, i = 1, . . . , n. (1.5)

Multiplicative property. If ξ(1), . . . , ξ(m) are independent random vectors, then
the generating function of their sum is equal to the product of the generating
functions of the summands, that is,

Fξ(1)+···+ξ(m) (s) = Fξ(1)(s) · · ·Fξ(m)(s). (1.6)

In particular, if ξ(1), . . . , ξ(m) are independent identically distributed random vec-
tors, then

Fξ(1)+···+ξ(m)(s) = F
m
ξ(1)(s). (1.7)

For the proofs of the relations (1.4)–(1.7) and other results on multivariate gen-
erating functions, see [106], Chap. 4, § 1.

§ 1.3. Markov processes with interaction
Let A = {εi ∈ Nn, i = 1, . . . , l}, be a finite set of vectors. To any vector εi we

assign a probability distribution {piγ � 0,
∑
γ p
i
γ = 1; p

i
εi = 0} on Nn and a set

{ϕiα � 0, α ∈ Nn; ϕiα = 0 if αk < εik for some k} of numbers. For a Markov process
with interaction ξ(t) we define the infinitesimal characteristics by the relations

aαα = −
l∑
i=1

ϕiα, aαβ =
l∑
i=1

ϕiαp
i
β−α+εi (α �= β), α, β ∈ Nn. (1.8)

Thus, a Markov process with interaction is determined by the set ε1, {p1γ}, {ϕ1α},
. . . , εl, {plγ}, {ϕlα}.
We denote by M1 the set of processes with interaction; thus, M1 ⊂M . We note

that any Markov process with finitely many states belongs to the set M1, and that
an arbitrary Markov process in M can be interpreted as a process with infinite set



Markov branching processes with interaction 249

A = Nn, where corresponding to every vector ε ∈ Nn is a probability distribution
on Nn of the form {pεγ = −aεγ/aεε, γ �= ε; pεε = 0} and the set {ϕεα = 0, α �= ε;
ϕεε = −aεε} of numbers.
Special classes of Markov processes are singled out in the set M1 by specifying a

type of the functions ϕ1, . . . , ϕl (cf. § 2.1) defining the sets {ϕ1α = ϕ1(α), α ∈ Nn},
. . . , {ϕlα = ϕl(α), α ∈ Nn} of numbers.
1.3.1. Interpretation in the form of a system with transmutations of
particles. A physical interpretation of a Markov process ξ(t) belonging to the
set M1 is as follows ([104], [16]). An event of the form {ξ(t) = α} can be treated
as a state of a system in which at a time t there is an aggregate Sα of particles
consisting of α1 particles of type T1, α2 particles of type T2, . . . , αn particles of
type Tn, that is, Sα = α1T1 +α2T2 + · · ·+αnTn. Let us introduce l complexes Sεi
of particle interaction that correspond to vectors εi ∈ A. An interaction of the com-
plex Sεi of particles occurs in a random time τ

i
α such that P{τ iα � t} = 1 − e−ϕ

i
αt.

At this instant, εi1 particles are chosen among the α1 particles of type T1, ε
i
2 par-

ticles are chosen among the α2 particles of type T2, . . . , ε
i
n particles are chosen

among the αn particles of type Tn, and this complex Sεi of particles is replaced
by an aggregate Sγ of new particles with probability distribution {piγ}. The sys-
tem passes from the state Sα corresponding to the vector α to the state Sα−εi+γ
corresponding to the vector α − εi + γ, and the further evolution of the particle
system is similar. The system stays in the state Sα during a random time τα
until one of the l possible interactions occurs, that is, τα = min(τ

1
α, . . . , τ

l
α). It is

assumed that the random variables τ1α, . . . , τ
l
α are independent. In this case

P{τα � t} = 1 − e−(ϕ
1
α+···+ϕ

l
α)t, and the probability of an interaction of the com-

plex Sεi of particles (under the condition that some interaction indeed occurred) is

equal to ϕiα
(∑l

i=1 ϕ
i
α

)−1
([12], Chap. 1, § 2). Let us represent the possible trans-

mutations of particles in this system by the following interaction scheme:




ε11T1 + ε
1
2T2 + · · ·+ ε1nTn → γ11T1 + γ12T2 + · · ·+ γ1nTn,

. . .

εi1T1 + ε
i
2T2 + · · ·+ εinTn → γi1T1 + γi2T2 + · · ·+ γinTn,

. . .

εl1T1 + ε
l
2T2 + · · ·+ εlnTn → γl1T1 + γl2T2 + · · ·+ γlnTn,

(1.9)

where the distribution of the random vector γi = (γi1, γ
i
2, . . . , γ

i
n) is {piγ} for any

i = 1, . . . , l.

1.3.2. Second equation for the generating function of the transition
probabilities. Let us consider the transition probabilities Pαβ(t), α, β ∈ Nn, of a
Markov process with interaction. We introduce the following multivariate generat-
ing functions:

Fα(t; s) =
∑
β

Pαβ(t)s
β , α ∈ Nn, hi(s) =

∑
γ

piγs
γ , i = 1, . . . , l, |s| < 1,

(1.10)
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and note that Fα(t; s) is an analytic function of the variables s1, . . . , sn in the
domain under consideration because |Fα(t; s)| �

∑
β Pαβ(t)|s1|β1 · · · |sn|βn �∑

β Pαβ(t) � 1. Below we need the Gel’fond–Leont’ev operator of generalized
differentiation ([29], [103]) defined on functions analytic in a neighbourhood of the
origin:

Di

(∑
β

aβs
β

)
=
∑
β�εi
aβϕ

i
βs
β−εi , i = 1, . . . , l.

By definition, all states of a Markov process with interaction are regular. Suppose
that all the conditions of § 1.1.1 for the second system of equations are satisfied.
Proposition 1.1. The second Kolmogorov system of differential equations for a
Markov process with interaction can be represented in the concise form

∂Fα(t; s)

∂t
=

l∑
i=1

(
hi(s) − sεi

)
Di(Fα(t; s)), Fα(0; s) = s

α. (1.11)

Proof. Substituting the expressions for the infinitesimal characteristics (1.8) into
the system (1.3), we obtain the following chain of equalities:

∂Fα(t; s)

∂t
=
∑
β

dPαβ(t)

dt
sβ =

∑
β

(∑
γ

Pαγ(t)aγβ

)
sβ

=
l∑
i=1

(∑
γ�εi

∑
β−γ+εi�0

Pαγ(t)ϕ
i
γp
i
β−γ+εis

β −
∑
β�εi
Pαβ(t)ϕ

i
βs
β

)

=
l∑
i=1

∑
γ�εi
Pαγ(t)ϕ

i
γs
γ−εi
( ∑
β−γ+εi�0

piβ−γ+εis
β−γ+εi − sεi

)

=
l∑
i=1

Di(Fα(t; s))
(
hi(s) − sε

i)
.

This proves Proposition 1.1.

Below we treat the problem of the equivalence of the system of equations (1.3)
and the equation (1.11) for specific sets {ϕ1α}, . . . , {ϕlα} of numbers.

§ 1.4. Branching processes with interaction
A special class B2 of Markov processes belonging to the set M1 is singled out

by the following conditions on {ϕ1α}, . . . , {ϕlα}. Let a set A = {εi = (εi1, . . . , εin),
i = 1, . . . , l}, probability distributions {piγ}, i = 1, . . . , l, and sets

ϕiα = λi

n∏
j=1

αj(αj − 1) · · · (αj − εij + 1) = λiα[ε
i], α ∈ Nn,

be given, where the λi > 0 are proportionality coefficients, i = 1, . . . , l. The infini-
tesimal characteristics {aαβ, α, β ∈ Nn} of a branching process with interaction are
defined by the formulae (1.8).
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The above choice of numbers {ϕiα} was proposed in [104]. Let a Markov
process be in some state α = (α1, . . . , αn), which corresponds to the presence of an
aggregate Sα of particles. It is assumed that, in a time ∆t, ∆t→ 0, the probability
ϕiα∆t+ o(∆t) of interaction of the complex Sεi of particles is proportional to the
number

(
α1
εi1

)
of combinations selecting εi1 particles of type T1 out of the existing

α1 particles of type T1, . . . , and proportional to the number
(
αn
εin

)
of combinations

selecting εin particles of type Tn out of the existing αn particles of type Tn.

1.4.1. First equation for the exponential generating function of tran-
sition probabilities. Let us introduce the exponential generating function of
transition probabilities,

Gβ(t; z) =
∑
α

zα

α!
Pαβ(t), β ∈ Nn, (1.12)

and the linear differential operators with constant coefficients

hi

(
∂

∂z

)
=
∑
γ

piγ
∂γ

∂zγ
, i = 1, . . . , l.

The function Gβ(t; z) is analytic with respect to the variables z1, . . . , zn for any β,
because

|Gβ(t; z)| �
∑
α

|z1|α1 · · · |zn|αn
α1! · · ·αn!

Pαβ(t) � e|z1|+···+|zn|. (1.13)

Theorem 1.2 [108]. The exponential generating function Gβ(t; z) of the transition
probabilities for a branching process with interaction satisfies the following linear
partial differential equation for any β ∈ Nn:

∂Gβ(t; z)

∂t
=

l∑
i=1

λiz
εi
(
hi

(
∂

∂z

)
− ∂

εi

∂zεi

)
Gβ(t; z), Gβ(0; z) =

zβ

β!
. (1.14)

Proof. To derive the equation (1.14), we reduce the first system of differential equa-
tions (1.2) for a branching process with interaction with the help of the multivariate
generating function (1.12),

dPαβ(t)

dt
=

l∑
i=1

∑
γ−α+εi�0

λiα
[εi]piγ−α+εiPγβ(t) −

l∑
i=1

λiα
[εi]Pαβ(t), α ∈ Nn;

(1.15)
the initial conditions are Pαα(0) = 1 and Pαβ(0) = 0 for α �= β. It follows
from (1.13) that the series (1.12) is absolutely and uniformly convergent with
respect to t for any fixed z. The derivative ∂Gβ(t; z)/∂t is equal to the sum of
the series ∑

α

zα

α!

dPαβ(t)

dt
,
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because the latter is absolutely and uniformly convergent with respect to t. Indeed,
it follows from (1.15) that

∣∣∣∣ ∑
|α|�L

zα

α!

dPαβ(t)

dt

∣∣∣∣
=

∣∣∣∣ ∑
|α|�L

zα

α!

l∑
i=1

∑
γ−α+εi�0

λiα
[εi]piγ−α+εiPγβ(t)−

∑
|α|�L

zα

α!

l∑
i=1

λiα
[εi]Pαβ(t)

∣∣∣∣
�

l∑
i=1

λi
∑
α�εi

|z|α
(α− εi)!

∑
r

pir +
l∑
i=1

λi
∑
α�εi

|z|α
(α− εi)!

= 2e|z1|+···+|zn|
l∑
i=1

λi|z|ε
i

<∞,

and we can apply the WeierstrassM -test for uniform convergence of a series. These
remarks justify the following formula:

∂Gβ(t; z)

∂t
=
∑
α

zα

α!

dPαβ(t)

dt
=
∑
α

zα

α!

(∑
γ

aαγPγβ(t)

)

=
l∑
i=1

λiz
εi
(∑
α�εi

∑
γ−α+εi�0

zα−ε
i

(α− εi)!p
i
γ−α+εiPγβ(t)−

∑
α�εi

zα−ε
i

(α− εi)!Pαβ(t)
)

=
l∑
i=1

λiz
εi
(∑
r

pir
∑
γ−r�0

zγ−r

(γ − r)!Pγβ(t) −
∑

α−εi�0

zα−ε
i

(α− εi)!Pαβ(t)
)

=
l∑
i=1

λiz
εi
(∑
r

pir
∂rGβ(t; z)

∂zr
− ∂

εiGβ(t; z)

∂zεi

)

=
l∑
i=1

λiz
εi
(
hi

(
∂

∂z

)
− ∂

εi

∂zεi

)
Gβ(t; z).

The condition Gβ(0; z) = z
β/β! follows from the initial conditions for the sys-

tem (1.15). This proves Theorem 1.2.

1.4.2. Second equation for the generating function of the transition
probabilities. We use the multivariate generating functions (1.10).

Theorem 1.3 [104]. The generating function Fα(t; s) of the transition probabilities
of a branching process with interaction satisfies for any α ∈ Nn the following linear
partial differential equation for |s| � 1:

∂Fα(t; s)

∂t
=

l∑
i=1

λi
(
hi(s)− sε

i)∂εiFα(t; s)
∂sε

i , Fα(0; s) = s
α. (1.16)
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Proof. The second system of differential equations (1.3) for a branching process
with interaction becomes

dPαβ(t)

dt
=

l∑
i=1

∑
β−γ+εi�0

Pαγ(t)λiγ
[εi ]piβ−γ+εi−

l∑
i=1

Pαβ(t)λiβ
[εi ], β ∈ Nn. (1.17)

The series Fα(t; s) =
∑
β Pαβ(t)s

β is absolutely and uniformly convergent with

respect to t for any fixed s, |s| < 1. The series
∑
β(dPαβ(t)/dt)s

β is absolutely and

uniformly convergent with respect to t for |s| < 1, and hence the sum of this series
is equal to ∂Fα(t; s)/∂t. Indeed, it follows from (1.17) that for |s| < 1 we have∣∣∣∣ ∑

|β|�L

dPαβ(t)

dt
sβ
∣∣∣∣

=

∣∣∣∣ ∑
|β|�L

l∑
i=1

∑
β−γ+εi�0

Pαγ(t)λiγ
[εi ]piβ−γ+εis

β −
∑
|β|�L

l∑
i=1

Pαβ(t)λiβ
[εi ]sβ

∣∣∣∣
�

l∑
i=1

λi|s|ε
i ∑
γ�εi
γ[ε

i ]|s|γ−ε
i∑
r

pir +
l∑
i=1

λi|s|ε
i ∑
β�εi
β[ε

i ]|s|β−ε
i

= 2
l∑
i=1

λi|s|ε
i
n∏
j=1

1

1− |sj|
<∞;

we can now apply the Weierstrass M -test for uniform convergence of a series. We
obtain the equation (1.16) by using the system (1.17):

∂Fα(t; s)

∂t
=
∑
β

dPαβ(t)

dt
sβ =

∑
β

(∑
γ

Pαγ(t)aγβ

)
sβ

=
l∑
i=1

λi

(∑
γ�εi

∑
β−γ+εi�0

Pαγ(t)γ
[εi ]piβ−γ+εis

β −
∑
β�εi
Pαβ(t)β

[εi ]sβ
)

=
l∑
i=1

λi
∑
γ�εi
Pαγ(t)γ

[εi ]sγ−ε
i

( ∑
β−γ+εi�0

piβ−γ+εis
β−γ+εi − sεi

)

=
l∑
i=1

λi
∂ε
i

Fα(t; s)

∂sε
i

(
hi(s) − sε

i)
.

This proves the validity of (1.16) for |s| < 1. The validity of the equation for |s| � 1
follows from the continuity. This completes the proof of Theorem 1.3.

We introduce the double generating function

F(t; z; s) =
∑
α

zα

α!
Fα(t; s) =

∑
α,β

zα

α!
Pαβ(t)s

β =
∑
β

Gβ(t; z)s
β.
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Corollary 1.4. The generating function F(t; z; s) of the transition probabilities of
a branching process with interaction satisfies the following equations for |s| � 1:

∂F

∂t
=

l∑
i=1

λiz
εi
(
hi

(
∂

∂z

)
− ∂

εi

∂zε
i

)
F, (1.18)

∂F

∂t
=

l∑
i=1

λi
(
hi(s) − sε

i)∂εiF
∂sε

i , F(0; z; s) = e
zs. (1.19)

§ 1.5. Branching processes
A special class B1 of Markov processes is singled out in the class B2 by the

conditions |εi| � 1, i = 1, . . . , l. To be definite, let A = {ε1 = (1, 0, . . . , 0),
ε2 = (0, 1, 0, . . ., 0), . . . , εl = (0, . . . , 0, 1, 0, . . . , 0)}. Then ϕiα = λiαi, α ∈ Nn,
i = 1, . . . , l, and the second Kolmogorov equation (1.16) becomes

∂Fα(t; s)

∂t
=

l∑
i=1

λi
(
hi(s) − si

)∂Fα(t; s)
∂si

, Fα(0; s) = s
α. (1.20)

The solution of the first-order partial differential equation (1.20) has the following
branching property ([106], Chap. 4, § 2, (3)):

Fα(t; s) = F
α1
ε1 (t; s)F

α2
ε2 (t; s) · · ·F

αl
εl
(t; s)s

αl+1
l+1 · · ·sαnn , α ∈ Nn. (1.21)

The branching property is the main feature distinguishing the class of branching
processes among the Markov processes. It says that if a state of a process is
interpreted as the existence of an aggregate of particles, then the particles existing at
a moment t1 evolve at any next moment t1+t, t > 0, and give new particles that are
independent of one another. This follows from a comparison of the formula (1.21)
with the properties (1.6) and (1.7) of the generating functions ([106], Chap. 4, § 2).
Theorem 1.5. The generating functions Fε1(t; s), . . . , Fεl(t; s) of the transition
probabilities of a branching process satisfy the following system of non-linear ordi-
nary differential equations for |s| � 1:


∂Fε1(t; s)

∂t
= λ1

(
h1(Fε1(t; s), . . . , Fεl(t; s), sl+1, . . . , sn) − Fε1(t; s)

)
,

. . .

∂Fεl(t; s)

∂t
= λl
(
hl(Fε1(t; s), . . . , Fεl(t; s), sl+1, . . . , sn)− Fεl(t; s)

)
,

(1.22)

with the initial conditions Fε1(0; s) = s1, . . . , Fεl(0; s) = sl.

The proof is based on the branching property (1.21) (see [106], Chap. 4, § 3,
Theorem 3). For n = 1 the non-linear equation is derived in § 5.1.
The particles of the types Tl+1, . . . , Tn are said to be final ([106], Chap. 5).

If the vector ε0 = (0, . . . , 0) belongs to the set A, in which case ϕ0α = λ0 for any
α ∈ Nn, then the branching process is called a process with immigration of particles
([106], Chap. 7).
A systematic exposition of the theory of branching stochastic processes is given

in the monograph [106]. For a survey of results in the theory of branching processes,
see [122].
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§ 1.6. The class B3B3B3
We define another class of Markov processes [42]. Suppose that a set A = {ε1 =

(1, 0, . . . , 0), ε2 = (0, 1, 0, . . ., 0), . . . , εl = (0, . . . , 0, 1, 0, . . ., 0)} is given, and cor-
responding to any vector εi is a probability distribution {piγ}. Let us introduce
sets {ϕiα} of numbers as follows. Suppose that Ui(x) is the distribution function of
some non-negative random variable and that Ui(x) is an infinitely divisible distri-
bution function for any i = 1, . . . , l. It is known ([26], vol. 2, Chap. 13, § 7) that
the Laplace transform of this function can be represented as

∫ ∞
0

e−px Ui{dx} = e−ψi(p), p � 0,

whereψi(p)=
∫∞
0
x−1(1−e−px)Pi{dx} andPi is ameasure with

∫∞
1
x−1Pi{dx}<∞.

We set ϕiα = ψi(αi) for α ∈ Nn and i = 1, . . . , l and define the infinitesimal char-
acteristics {aαβ, α, β ∈ Nn} of a Markov process of class B3 by the formulae (1.8).
The choice of the numbers {ϕ1α}, . . . , {ϕlα} is related to properties (presented below
in §§ 2.1.2 and § 5.4, see also [42]) of birth-and-death processes of power-law type.
The class B3 of processes is closest to the class B1 of branching processes; indeed,
if a distribution Ui(x) is concentrated at a point λi (λi > 0), then ϕ

i
α = λiαi for

α ∈ Nn and i = 1, . . . , l, and we obtain a process of class B1.

§ 1.7. Structure of the set of Markov processes
A generalization of the structure (1.1) for Markov processes with countable state

spaces is of the form

M ⊃ M1 ⊃ B2
∪ ∪
B3 ⊃ B1

B2 ∩B3 = B1, (1.23)

where B1 stands for the class of Markov branching processes and B2 for the class of
branching processes with interaction, the class B3 is defined in § 1.6, and the setM1
is described in § 1.3. The sets M1, B2, B1, and B3 were defined by indicating the
infinitesimal characteristics {aαβ, α, β ∈ Nn} in each of these cases.
The non-linear property (1.21) of the transition probabilities, which holds for

Markov processes belonging to the special class B1, determined the structure of a
powerful analytic apparatus to study branching processes ([106], Foreword). The
following problem arises in connection with the structure (1.23): find non-linear
properties of transition probabilities for other special classes.

CHAPTER II

APPLICATIONS IN FORMAL KINETICS

Markov processes with interaction, regarded as particular cases of Markov pro-
cesses on Nn, have been defined in many papers devoted to specific problems of
physical kinetics, chemical kinetics, population dynamics in ecological systems,
queueing theory, and so on; this is due to the intuitiveness of the state space Nn.
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In the present chapter and the next we give a survey of results for diverse schemes
of interactions.
In the structure (1.23) the choice of infinitesimal characteristics for the classes

B1, B2, and B3 of Markov processes is determined by phenomenological laws of
kinetics. Branching processes of class B1 describe the exponential growth of the
number of “active” particles at the initial stage of a chain reaction [22], whereas
processes of class B3 correspond to power-law growth of the number of “active”
particles in a reaction of the same type [124]. In § 2.1.2 we present theorems on the
asymptotic behaviour of the mean number of particles in birth-and-death processes
of linear, power-law, and Poisson types. In § 2.2 we suggest models of chemical
reactions in the form of processes of classes B1 and B2. A relationship between a
model of a bimolecular chemical reaction in the form of a Markov process of classB2
and the macroscopic description of the kinetics of this reaction in the form of the
law of active mass was established in [79]. Processes belonging to M1 can serve as
models of quite different reactions.
Stochastic models with interaction of particles for discrete states coinciding with

those studied in the paper have been investigated by numerical experiments (see, for
instance, [94], [95], [109], where actual physical-chemical phenomena were studied).
In § 2.3 we briefly present results of statistical simulation of a branching process
with a ‘predator-prey’ interaction scheme.

§ 2.1. Types of birth-and-death processes
Let the transition probabilities Pij(t) = P{ξt = j | ξ0 = i} of a homogeneous

Markov process ξt on the state space N = {0, 1, 2, . . .}, where t ∈ [0,∞), be repre-
sentable as t→ 0+ in the form
Pi,i−1(t) = ϕip0t+ o(t), Pii(t) = 1− ϕit+ o(t), Pi,i+1(t) = ϕip2t+ o(t), (2.1)
where p0 � 0, p2 � 0, p0+p2 = 1, ϕ0 = 0, and ϕi > 0 for i = 1, 2, . . . . The process
stays in the initial state i during a random time τi with P{τi � t} = 1 − e−ϕit,
after which it passes either to the state i − 1 with probability p0 or to the state
i+ 1 with probability p2. The further evolution of the process is similar, and the
state 0 is absorbing. An ‘embedded Markov chain’ for such a process is a random
walk on N with absorbing boundary point 0.
A birth-and-death process ξt is a process belonging to M1 and having the inter-

action complex ε = 1. If a process in M1 has only a single interaction complex,
then [48] we can represent the first and second system of equations for the transition
probabilities in a concise form by using generating functions. We can then apply
the operator of generalized differentiation Dz and use an eigenfunction e(z) of this
operator [29]:

Dz

( ∞∑
j=0

ajz
j

)
=
∞∑
j=1

ajϕjz
j−1, e(z) =

∞∑
i=0

zi

ϕ1 · · ·ϕi
. (2.2)

Let us introduce the following generating functions:

Gj(t; z) =
∞∑
i=0

zi

ϕ1 · · ·ϕi
Pij(t), j ∈ N; Fi(t; s) =

∞∑
j=0

Pij(t)s
j , i ∈ N; |s| < 1.
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Proposition 2.1. Thefirst and second Kolmogorov systems of differential equations
for a birth-and-death process ξt can be represented in the form

∂Gj(t; z)

∂t
= z(p2D

2
z + p0 −Dz)Gj(t; z), Gj(0; z) =

zj

ϕ1 · · ·ϕj
, (2.3)

∂Fi(t, s)

∂t
= (p2s

2 + p0 − s)Ds(Fi(t, s)), Fi(0, s) = si. (2.4)

Proof. The first system of differential equations (1.2) for the process ξt becomes

dP0j(t)

dt
= −ϕ0P0j(t),

dPij(t)

dt
= p0ϕiPi−1,j(t) − ϕiPij(t) + p2ϕiPi+1,j(t), i = 1, 2, . . . ,

with the initial conditions Pii(0) = 1 and Pij(0) = 0 for i �= j. Using the definition
of the function Gj(t; z), we obtain the equation (2.3):

∂Gj

∂t
=
∞∑
i=0

zi

ϕ1 · · ·ϕi
dPij(t)

dt

= zp2

∞∑
i=1

zi−1

ϕ1 · · ·ϕi−1
Pi+1,j(t)

− z
∞∑
i=1

zi−1

ϕ1 · · ·ϕi−1
Pij(t) + zp0

∞∑
i=1

zi−1

ϕ1 · · ·ϕi−1
Pi−1,j(t)

= zp2D
2
z(Gj)− zDz(Gj) + zp0Gj = z(p2D2z −Dz + p0)Gj.

The equation (2.4) is a particular case of the equation (1.11). This proves Propo-
sition 2.1.

Let us introduce the double generating function

F(t; z; s) =
∞∑
i=0

zi

ϕ1 · · ·ϕi
Fi(t; s) =

∞∑
i,j=0

zi

ϕ1 · · ·ϕi
Pij(t)s

j =
∞∑
j=0

Gj(t; z)s
j . (2.5)

Corollary 2.2. The first and second systems of equations for the process ξt can be
represented in the form

∂F

∂t
= z(p2D

2
z + p0 −Dz)F, (2.6)

∂F

∂t
= (p2s

2 + p0 − s)Ds(F), F(0; z; s) = e(zs). (2.7)

The types of Markov processes are defined in dependence on the function ϕi =
ϕ(i) [104]. For birth-and-death processes of Poisson type we set ϕ0 = 0 and ϕi = λ
for i = 1, 2, . . . (λ > 0); then Dz(f) = λ(f(z) − f(0))/z and e(z) = λ/(λ − z).
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For processes of linear type we set ϕi = iλ+ λ1; such a process is of class B1. If
ϕi = iλ, then Dz = λ (d/dz) and e(z) = e

z. For a process of quadratic type [38] we
set ϕi = i

2λ+ iλ1+λ2. If ϕi = i(i−1)λ, then Dz = λz (d2/dz2), and the process is
of class B2. For a process of polynomial type [82] we set ϕi = i

kλ+ik−1λ1+· · ·+λk;
in particular, processes of cubic and biquadratic types have been studied [81]. For
a process of power-law type we have ϕi = i

ρλ with 0 < ρ < 1.
The Kolmogorov equations for the above birth-and-death processes have a unique

solution if either p0 � p2 or p0 < p2 and
∑∞
i=1 ϕ

−1
i =∞ ([30], Chap. 7, § 4).

2.1.1. Exact solutions of the Kolmogorov equations. There are few cases in
which an explicit solution of the first and second systems of differential equations
for Markov processes with countable state space can be found; the known solutions
relate to the above birth-and-death processes and some of their modifications.
Let δii = 1 and δ

i
j = 0 for i �= j.

Simple death process. By setting p0 = 1 in the definition (2.1), we obtain a simple
death process; the second equation becomes

∂Fi(t; s)

∂t
= (1− s)Ds(Fi(t; s)), Fi(0; s) = s

i.

For a death process the expressions for the transition probabilities (provided that
the numbers ϕi are pairwise distinct) are as follows: P0j(t)=δ

0
j for j∈N,Pij(t)=0

for j > i � 1, and

Pij(t) = ϕj+1 · · ·ϕi
i∑
n=j

e−ϕnt

(ϕi − ϕn) · · · (ϕn+1 − ϕn)(ϕn−1 − ϕn) · · · (ϕj − ϕn)
(2.8)

for j � i.
Pure birth process. By setting p2 = 1 in the definition (2.1), we obtain the second
equation for the birth process,

∂Fi(t; s)

∂t
= (s2 − s)Ds(Fi(t; s)), Fi(0; s) = s

i.

The expressions for the transition probabilities (provided that the numbers ϕi are
pairwise distinct) are as follows [30]: P0j(t) = δ

0
j for j ∈ N, Pij(t) = 0 for j < i,

and

Pij(t) = ϕi · · ·ϕj−1
j∑
n=i

e−ϕnt

(ϕi − ϕn) · · · (ϕn−1 − ϕn)(ϕn+1 − ϕn) · · · (ϕj − ϕn)
(2.9)

for j � i � 1.
Birth-and-death process of Poisson type. The second equation is

∂Fi(t, s)

∂t
= λ(p2s

2 + p0 − s)
Fi(t; s)− Fi(t; 0)

s
, Fi(0, s) = s

i.
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The solution of this equation leads to the following formulae for the transition
probabilities (for 0 < p0 < 1; see [27], [93]): P0j(t) = δ

0
j for j ∈ N and

Pi0(t) = i

∫ t
0

e−λx
(
p0
p2

)i/2
Ii(2
√
p0p2 λx) dx, i = 1, 2, . . . ,

Pij(t) = e
−λt
(
p0

p2

)(i−j)/2(
Ii−j(2

√
p0p2 λt) − Ii+j(2

√
p0p2 λt)

)
, i, j �= 0,

(2.10)

where Ii(t) are the modified Bessel functions.

Birth-and-death process of linear type. Let Ds = λ (d/ds) in the equation (2.4).
For p0 �= p2, the solution of the first-order partial differential equation is ([71],[106])

Fi(t; s) =

(
p0(1− e(p0−p2)λt)− s(p0 − p2e(p0−p2)λt)
p2 − p0e(p0−p2)λt − sp2(1− e(p0−p2)λt)

)i
, i ∈ N. (2.11)

Explicit solutions of the Kolmogorov equation for p0 = p2 and for some other birth-
and-death processes of linear type are presented in [106]. Processes of linear type
have been studied in [75], [37], and elsewhere.

2.1.2. Probabilistic models of chain reactions. In nuclear physics, the initial
stage of a chain reaction is described [106] by the amount x(t) of ‘active’ matter at
any time t ∈ [0,∞); a detailed description of physical processes of this kind can be
found in [22], [33], [119], [21]. The amount x(t) of matter can grow exponentially,
according to a power law, or linearly. When describing the growth of the active
matter in a chain reaction, the equation of formal kinetics is applied [23],

ẋ = λxρ, x(0) = x0, 0 � ρ � 1, (2.12)

where the coefficient λ > 0 is called the reaction rate constant. If ρ = 1 in the
equation (2.12), then x(t) = x0e

λt. For 0 < ρ < 1 the solution is

x(t) =

[
(1− ρ)

(
x1−ρ0
1− ρ + λt

)]1/(1−ρ)
; (2.13)

hence, x(t) ∼ C0(λt)1/(1−ρ) as t → ∞, where C0 > 0. If ρ = 0 in (2.12), then
x(t) = x0 + λt.
Corresponding to the deterministic model (2.12) is the probabilistic model of

a chain reaction in the form of a Markov birth-and-death process ξt, namely, the
process belonging to the set M1 is determined by the triple ε = 1, {p0, p2 � 0,
p0 + p2 = 1}, {ϕ0 = 0, ϕi > 0, i = 1, 2, . . .}. When interpreting an event {ξt = i}
as the presence of i particles of type T , we obtain the scheme T → kT , k = 0, 2,
in which either one particle of active type T disappears with probability p0 or two
new particles of type T appear with probability p2. We set h(s) = p0 + p2s

2. The
probabilistic model is characterized by the mean number Ai(t) = E(ξt | ξ0 = i) of
particles at any time t.
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Model of a chain reaction with exponential growth. For a birth-and-death process
of linear type in which ϕi = λi, i ∈ N (λ > 0), we have the following second
equation for the generating function of the transition probabilities:

∂Fi(t; s)

∂t
= λ(h(s) − s)∂Fi(t; s)

∂s
, Fi(0, s) = s

i. (2.14)

By differentiating with respect to s, we obtain from (2.14) the following equation
for the expectation of the number Ai(t) = (∂Fi(t; s)/∂s)|s=1 of particles:

dAi

dt
= aAi, Ai(0) = i

(where a = λ(h′(1) − 1)), which coincides with the equation (2.12) for ρ = 1.
Theorem 2.3 ([106], [33]). For a birth-and-death process of linear type,

Ai(t) = ie
at. (2.15)

The number a is called the criticality parameter. If a > 0, then the mean number
of active particles grows exponentially. In the theory of branching processes the
general scheme T → kT studied has one particle turning into k new particles with
probability distribution {pk}. Then h(s) =

∑∞
k=0 pks

k in the equation (2.14), and
the formula (2.15) also holds. In the table we present the probabilities pk for the
occurrence of k secondary neutrons in nuclear fission of uranium 235U by thermal
neutrons [22].

k 0 1 2 3 4 5 6 7
pk 0.0333 0.1745 0.3349 0.3028 0.1231 0.0281 0.0032 0.0001

Model of a chain reaction with power-law growth. The probabilistic model of a
chain reaction corresponding to the law (2.13) is a birth-and-death process in the
class B3. Let U(x) be the distribution function of a non-negative random variable
and also the distribution function of a stable law with parameter ρ, 0 < ρ < 1. The
Laplace transform of the distribution U(x) ([26], vol. 2, Chap. 13, § 6) is

ω(p) =

∫ ∞
0

e−px U{dx} = e−ψ(p), p � 0,

where ψ(p) = λpρ and λ > 0. According to the definition in § 1.6, we obtain
ϕi = λi

ρ for i ∈ N.
Theorem 2.4 [125]. Let the criticality parameter and the exponent of a birth-and-
death process of power-law type satisfy the relations a > 0 and 1/2 < ρ < 1. Then
as t→∞

Ai(t) ∼ Ci(at)1/(1−ρ), Ci > 0.

Similar results were obtained in [14].

Model of a chain reaction with linear growth. For the case in which ϕ0 = 0 and
ϕi = λ for i = 1, 2, . . ., the next assertion was obtained in [93] on the basis of
explicit expressions (2.10) for the transition probabilities.
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Theorem 2.5 [93]. Let the criticality parameter a be positive for a birth-and-death
process of Poisson type. Then as t→∞

Ai(t) ∼ Ciat, Ci > 0.

The above laws for the growth of the mean number of active particles in chain
reactions are shown in Fig. 1.

Figure 1. Means for schemes of the form
T → kT

Figure 2. Means for schemes of the form
T1 → T2 → T3

§2.2. Markov models of chemical reactions
The general scheme of a chemical reaction with the reagents T1, . . . , Tn can

be represented in the form (1.9) for fixed vectors γ1, . . . , γl [23]. A single row in
the scheme (1.9) corresponds to an elementary act of reaction. The kinetics of the
chemical reaction is described by the amount xi(t) of any reagent Ti at any time
t ∈ [0,∞), where i = 1, . . . , n. The functions x1(t), . . . , xn(t) satisfy a system of
differential equations of the form


ẋ1 = f1(x1, . . . , xn),

. . .

ẋn = fn(x1, . . . , xn),

with initial conditions x1(0) = x
0
1, . . . , xn(0) = x

0
n. The form of the functions

f1, . . . , fn is determined according to the laws of formal chemical kinetics [23].
Probabilistic models of chemical reactions in the form of Markov processes on the

state space Nn were introduced in [79]. Diverse examples of such Markov processes
are given in [10] (Chap. 8, Applications to Chemistry) and [89]. The branching
process with the scheme (1.9) and with fixed vectors γ1, . . . , γl was defined in [92]
and called a generalized birth-and-death process. For a detailed description of the
physical assumptions under which a representation of a chemical reaction in
the form of a Markov process is admissible, see [121], §§ 7.1, 7.2. Below we
present the main equations of chemical kinetics and the corresponding Markov
processes on Nn.
We note that the interaction scheme (1.9) can take into account both the for-

mation of the final product in a chemical reaction (processes with particles of final
types) and the introduction of reagents into the system from outside (processes
with immigration of particles).
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2.2.1. Monomolecular reactions. Chemical reactions in which only one particle
takes part in any elementary act are said to be monomolecular; the scheme (1.9)
becomes 


T1 → γ11T1 + γ12T2 + · · ·+ γ1nTn,
. . .

Tl → γl1T1 + γl2T2 + · · ·+ γlnTn.
(2.16)

Models of monomolecular chemical reactions are Markov processes of class B1
[105]. In Chap. 4, § 6 of [106] a classification of types of particles in branching
processes is given which is a classification of schemes of the form (2.16), in Chap. 4,
§ 4 general methods for computing the mean number of particles of type Ti, i =
1, . . . , n, are presented, and in Chap. 4, § 7 asymptotic properties of the means in
indecomposable branching processes are investigated as t → ∞ and the diversity
of the asymptotic behaviour of the means for decomposable processes is indicated.
For chemical reactions, schemes of the form (2.16) correspond to decomposable
processes as a rule; the following examples relate to such processes.

Reaction T1 → T2. The reaction is described by the amount x1(t) of reagent T1
and the amount x2(t) of reagent T2. The following law of kinetics is assumed to
hold [23]:

ẋ1 = −λx1, ẋ2 = λx1, (2.17)

where λ > 0 is the reaction rate constant.
Corresponding to the deterministic model (2.17) is a process of class B1 with

transmutation of particles for two types of particles T1 and T2 and one interaction
complex ([10], [89]), namely, the Markov process ξ(t) = (ξ1(t), ξ2(t)), t ∈ [0,∞),
(on the state space N2) determined by ε = (1, 0), {p(0,1) = 1}, {ϕα = λα1,
α ∈ N2, λ > 0}. The second Kolmogorov equation for the generating function
F(α1,α2)(t; s1, s2) of the transition probabilities becomes

∂Fα(t; s)

∂t
= λ(s2 − s1)

∂Fα(t; s)

∂s1
, (2.18)

and for the initial condition we take Fα(0; s) = s
α1
1 .

Differentiating (2.18) with respect to s1 or s2, we obtain the following system of
equations for the mean numbers A1(t) = Eξ1(t) and A2(t) = Eξ2(t) of particles:

dA1
dt
= −λA1,

dA2
dt
= λA1,

with the initial conditions A1(0) = α1 and A2(0) = 0. Hence, A1(t) = α1e
−λt and

A2(t) = α1(1− e−λt). The solution of (2.18) is

F(α1,0)(t; s1, s2) =
(
s1e
−λt + s2(1− e−λt)

)α1
. (2.19)

It follows from (2.19) by the formula (1.5) that D1(t) = D2(t) = α1e
−λt(1− e−λt),

where D1(t) = Dξ1(t) and D2(t) = Dξ2(t) are the variances of the numbers of
particles.
The generating function (2.19) corresponds to the binomial distribution on

the states {(α1, 0), (α1 − 1, 1), . . . , (0, α1)}. The de Moivre–Laplace theorem
on the approximation of a binomial distribution by a normal distribution acquires
the following form.
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Theorem 2.6. Let ξi(t) be the number of particles of type Ti at time t for a
branching process with the scheme T1 → T2 and let there be α1 particles of type T1
at time t = 0. Then for any t > 0

lim
α1→∞

P

{
ξi(t)− Ai(t)√

Di(t)
� x
}
=
1√
2π

∫ x
−∞
e−u

2/2 du, i = 1, 2. (2.20)

Observing a chemical reaction, one obtains a set of experimental data, and the
results of the statistical data processing give approximations for the kinetic curves
x1(t) and x2(t). As a rule, it is assumed that the experimental points deviate
from the kinetic curve according to a normal law. The limit Theorem 2.6 shows
that the deviation of the ‘experimental’ values ξi(t) from the values Ai(t) is indeed
distributed according to a normal law under the assumptions of the probabilistic
model under consideration.

Successive reactions T1 → T2 → T3. In [97] a decomposable branching process
was considered with three types of particles T1, T2, T3 and the following scheme of
transmutation of particles:

{
T1 → γ11T1 + γ12T2 + γ13T3,
T2 → γ22T2 + γ23T3.

(2.21)

The generating function F(α1,α2,α3)(t; s1, s2, s3) of the transition probabilities sat-
isfies the second equation (where λ > 0 and µ > 0),

∂Fα(t; s)

∂t
= λ(h1(s1, s2, s3)− s1)

∂Fα(t; s)

∂s1
+ µ(h2(s2, s3) − s2)

∂Fα(t; s)

∂s2
, (2.22)

and we take the initial condition in the form Fα(0; s) = s
α1
1 . Here h1(s1, s2, s3) and

h2(s2, s3) stand for the probability generating functions. We set

aij =
∂hi
∂sj

∣∣∣∣
s=1

− δij , bijk =
∂2hi
∂sj∂sk

∣∣∣∣
s=1

, i, j, k = 1, 2, 3.

By using the methods of [106] (Chap. 4), explicit expressions for the mean num-
ber Ai(t) of particles of type Ti, i = 1, 2, 3, were obtained from the equation (2.22)
in [97]. In Fig. 2 we present the shape of Ai(t) for a

1
1 < 0, a

1
2 > 0, a

2
2 < 0, and

a23 > 0. This shape of the kinetic curves is typical for monomolecular chemical
reactions T1 → T2 → T3 ([23], Fig. 56).

Theorem 2.7 [97]. Suppose that a11 < 0, a
1
2 > 0, a

2
2 < 0, a

2
3 > 0, b

1
11 > 0 or

b222 > 0, and h2(0, 1) > 0 for a branching process with the scheme (2.21). Let there
be α1 particles of type T1 at time t = 0, and let ηα1 be the number of final particles
of type T3 generated by the original particles. Then

lim
α1→∞

P

{
ηα1 − a1α1
σ1
√
α1

� x
}
=
1√
2π

∫ x
−∞
e−u

2/2 du, (2.23)
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where

a1 =
a12a

2
3 − a13a22
a11a

2
2

, σ21 = b1 + a1 − (a1)2,

b1 = −
a12b2 + b

1
11(a1)

2 + 2b112a1a2 + b
1
22(a2)

2 + 2b113a1 + 2b
1
23a2 + b

1
33

a11
,

a2 = −
a23
a22
, b2 = −

b222(a2)
2 + 2b223a2 + b

2
33

a22
.

Theorem 2.7 generalizes Theorem 1 in [106], Chap. 5, § 5, where a branching
process with the scheme T1 → γ1T1 + γ2T2 was considered. A process with the
general scheme T1 → T2 → · · · → Tn was studied in [98]; for other decomposable
branching processes, see the survey [122].
For other schemes (2.16), assertions of the form (2.20) and (2.23) follow from

the branching property (1.21), which means for a fixed t > 0 that the number
of particles of type Ti is a sum of independent random variables; to derive limit
theorems one can apply the method of characteristic functions to the relation (1.21).
In [106] (Chap. 5, § 5) it was established that, along with the normal distribution,
there are other limit distributions for large initial numbers of particles.

2.2.2. Bimolecular reactions. A chemical reaction whose elementary act in-
volves two particles is said to be bimolecular. Let x1(t), x2(t), x3(t) be the amounts
of the reagents T1, T2, T3 at time t for a bimolecular reaction with the scheme
T1 + T2 → T3. In formal kinetics the following law of active mass is assumed [23]:

ẋ1 = −λx1x2, ẋ2 = −λx1x2, ẋ3 = λx1x2. (2.24)

For a probabilistic model of the reaction we consider a process of class B2 with
three types of particles T1, T2, T3 and one interaction complex ([10], [89]), namely,
a Markov process ξ(t) = (ξ1(t), ξ2(t), ξ3(t)), t ∈ [0,∞), (on the state space N3)
determined by ε = (1, 1, 0), {p(0,0,1) = 1}, {ϕα = λα1α2, α ∈ N3, λ > 0}. The
second equation for the generating function F(α1,α2,α3)(t; s1, s2, s3) of the transition
probabilities is

∂Fα(t; s)

∂t
= λ(s3 − s1s2)

∂2Fα(t; s)

∂s1∂s2
, Fα(0; s) = s

α.

We note that ξ(t) is a death process on the states {(α1, α2, α3), (α1 − 1, α2 − 1,
α3 + 1), . . . , (α1 − α2, 0, α3 + α2)} with the absorbing state (α1 − α2, 0, α3 + α2)
(under the assumption that α1 � α2). The explicit expressions for the transition
probabilities of the process ξ(t) are given by the formula (2.8) for the corresponding
function ϕ.
In the probabilistic model under consideration, the mean numbers Ai(t) =

(∂Fα(t; s)/∂si)|s=1 of particles of the type Ti, i = 1, 2, 3, do not satisfy the equa-
tions (2.24). These equations hold approximately for the means Ai(t) provided that
the initial number of particles is large; one sets α = (nα1, nα2, nα3) and passes to
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the limit as n → ∞ (this passage corresponds to the thermodynamical limit used
in statistical physics [102]). Conditions for this deterministic approximation of a
process ξ(t) were studied in [10] (§ 8.2, Sect. C) on the basis of explicit expressions
for the transition probabilities.
From the point of view of the above passage to the limit, a Markov process of

class B2 on N
n with the interaction scheme Ti + Tj → Tk + Tl, i, j, k, l = 1, . . . , n,

was studied in [79]. The equations of formal kinetics for other bimolecular schemes
and the corresponding Markov processes of class B2 are presented in § 2.3 and in
§§ 3.3.2, 4.2.1 (see also [32], [57]).
Class B4. When studying chemical reactions, we always restrict ourselves to inter-
actions involving at most two particles, that is, in the scheme (1.9) we assume that
|εi| � 2 for i = 1, . . . , l. In formal kinetics one considers a generalization of the
law (2.24); for the bimolecular reaction T1 + T2 → T3,

ẋ1 = −λxρ11 x
ρ2
2 , ẋ2 = −λx

ρ1
1 x

ρ2
2 , ẋ3 = λx

ρ1
1 x

ρ2
2 , ρ1 > 0, ρ2 > 0

[23] (cf. (2.12)). On the state space Nn one can introduce the class B4 of Markov
processes (by analogy with the definition of the class B3) that corresponds to
the equations of the above form. The structure (1.23) is then supplemented by the
relations M1 ⊃ B4 ⊃ B2, M1 ⊃ B4 ⊃ B3.

§ 2.3. ‘Predator-prey’ stochastic process
The dynamics of an ecological predator-prey’ system is described by the number

x1(t) of ‘predators’ and the number x2(t) of ‘preys’ at any time t. The following
system of non-linear differential equations is used [123]:

ẋ1 = −µx1 + λx1x2, ẋ2 = ρx2 − λx1x2, (2.25)

where λ, µ, and ρ are some positive constants.
Corresponding to the deterministic model is a Markov process ξ(t)=(ξ1(t), ξ2(t)),

t ∈ [0;∞), on the state space N2 which is a branching process with two types of
particles T1 and T2 and the interaction scheme [20]


T1 + T2 → 2T1,
T1 → 0,
T2 → 2T2.

(2.26)

The second Kolmogorov equation for the generating function F(α1,α2)(t; s1, s2)
of the transition probabilities is of the form

∂Fα(t; s)

∂t
= λ(s21−s1s2)

∂2Fα(t; s)

∂s1∂s2
+µ(1−s1)

∂Fα(t; s)

∂s1
+ρ(s22−s2)

∂Fα(t; s)

∂s2
(2.27)

with the initial condition Fα(0; s) = s
α. An event {ξ(t) = (β1, β2)} is interpreted

as the existence of an aggregate of β1 particles of type T1 and β2 particles of type T2.
The particles of type T1 are ‘predators’, and the particles of type T2 are ‘preys’;
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Figure 3. Realization of a predator-prey Markov process

the scheme (2.26) assumes that an interaction of a predator and a prey leads to an
increase in the number of predators, predator-particles can die, and prey-particles
produce others of the same type. This description of a predator-prey system agrees
with the system of differential equations (2.25) if the initial number of particles is
large; an approximation of the system (2.25) is obtained from the equation (2.27) by
differentiating with respect to s1 or s2 and passing to the mean number of particles
Ai(t) = (∂Fα(t; s)/∂si)|s=1, i = 1, 2.
In [116] an equivalent description of a Markov process ξ(t) with the help of the

random time τ(β1,β2) during which the process stays in the state (β1, β2) in accor-
dance with 1.3.1 was used in a computer-aided statistical simulation of the process.
Statistical experiments enable one to make conjectures about the domain K of val-
ues of the parameters µ and ρ (one can set λ = 1 without loss of generality) in which
the realizations of the process ξ(t) stably have an oscillatory form (which is typical
for deterministic predator-prey systems [123]): K = {µ > 0, ρ > 0 : c1 < µ/ρ < c2},
where c1 and c2 are some constants. If the parameters are outside the domain K,
then the process either quickly falls into one of the states (γ1, 0), γ1 = 1, 2, . . . ,
and degenerates into the absorbing state (0, 0), or falls into one of the states
(0, γ2), γ2 = 1, 2, . . . , and goes to infinity. In Fig. 3 we show an example of the
realization of a process (ξ1(t), ξ2(t)), t ∈ [0, 2.159834], for the initial conditions
ξ1(0) = 12, ξ2(0) = 20 and for the values λ = 1, µ = 31, and ρ = 27 of the
parameters [116].

A survey of literature on computer-aided simulation of predator-prey systems
can be found in [72]; see also [95].
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CHAPTER III

STATIONARY AND FINAL PROBABILITIES

Let Pαβ(t) be the transition probabilities of a homogeneous Markov process on
the set Nn with continuous time t ∈ [0,∞). As was shown in the general theory of
processes with countable state space [18], if the assumptions of § 1.1.1 are satisfied,
then the limits

qαβ = lim
t→∞

Pαβ(t) (3.1)

exist for any α, β ∈ Nn; the numbers qαβ are called limit probabilities. The limit
probabilities may not be a probability distribution, that is,

∑
β qαβ � 1.

The limit behaviour of Markov processes can be of diverse nature; it is deter-
mined by the classification of the states of the process [18]. We can distinguish
the principal cases in which a process falls into an absorbing state, goes to infinity,
or tends to a stationary state. To find the final probabilities (the probabilities of
degeneration of the process into an absorbing state), the stationary first Kolmogorov
system of differential equations is solved; to find the limit stationary probability
distribution, the stationary second Kolmogorov system of differential equations is
solved. In § 3.1 the first and second stationary equations for the generating func-
tions of the limit probabilities of Markov processes of class B2 are obtained. In § 3.2
it is shown that the stationary distribution as t→∞ coincides with the canonical
distribution used in equilibrium statistical physics (for certain processes of classes
B1 or B2). A method proposed by the author for finding the final probabilities
for processes with interaction by solving partial differential equations for the expo-
nential (double) generating function is presented in § 3.3. We also give results on
integral representations for the final probabilities for interaction schemes with par-
ticles of different types. Exact solutions of the Darboux–Picard boundary-value
problem (Goursat problem) for second-order partial differential equations of hyper-
bolic type are obtained by the Riemann method.

§ 3.1. Equations for limit probabilities
Let a Markov process of class B2 be determined by ε

1, {p1γ}, . . . , εl, {plγ}. We
introduce the multivariate generating functions for the probabilities (3.1):

gβ(z) =
∑
α

zα

α!
qαβ, fα(s) =

∑
β

qαβs
β , α, β ∈ Nn.

The function gβ(z) is an analytic function of the variables z1, . . . , zn, and the func-
tion fα(s) is analytic in the domain |s1| < 1, . . . , |sn| < 1.

Theorem 3.1. The exponential generating function gβ(z) of the limit probabilities
of a branching process with interaction satisfies the following linear partial differ-
ential equation for any β ∈ Nn:

l∑
i=1

λiz
εi
(
hi

(
∂

∂z

)
− ∂

εi

∂zεi

)
gβ(z) = 0. (3.2)
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Proof. Let us use the equation (1.14) obtained in Theorem 1.2 for the exponential
generating function Gβ(t; z) of the transition probabilities to derive the stationary
equation (3.2). As is known in the general theory of homogeneous Markov processes
with countable state space [18], under the assumptions of § 1.1.1 we have

lim
t→∞

dPαβ(t)

dt
= 0, α, β ∈ Nn.

Hence, it follows from the uniform convergence of the series

∑
α

zα

α!

dPαβ(t)

dt

with respect to t (established in the proof of Theorem 1.2) that

lim
t→∞

∂Gβ(t; z)

∂t
= 0, β ∈ Nn. (3.3)

On the other hand, since the series

∑
α

zα

α!
Pαβ(t)

is uniformly convergent in the domain t ∈ [0,∞), it follows that

gβ(z) = lim
t→∞

Gβ(t; z), β ∈ Nn. (3.4)

The equation (1.14) together with the relations (3.3) and (3.4) implies (3.2). This
proves Theorem 3.1.

Theorem 3.2. The generating function fα(s) of the limit probabilities of a branch-
ing process with interaction satisfies for |s| � 1 the following linear partial differ-
ential equation for any α ∈ Nn:

l∑
i=1

λi
(
hi(s) − sε

i)∂εifα(s)
∂sεi

= 0. (3.5)

Theorem 3.2 follows from Theorem 1.3.

§ 3.2. Stationary distribution for a system
of interacting particles for discrete states

A stochastic system of particles (of n different types T1, . . . , Tn) interacting with
one another by complexes is considered. A state of the system is characterized
by an n-dimensional vector α = (α1, . . . , αn) ∈ Nn, which means the existence
of a group Sα of particles formed by α1 particles of type T1, . . . , αn particles of
type Tn; let Pαβ(t), α, β ∈ Nn, be the probability of the event that the initial
group Sα of particles passes to the group Sβ of particles during the time inter-
val [0, t]. Following § 1.3, we assume that the stochastic process has the Markov
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property and is homogeneous with respect to time. The transition probability den-
sities aαβ = (dPαβ(t)/dt)|t=0+, α, β ∈ Nn, are determined as follows. We fix a
set A = {ε1, . . . , εl ∈ Nn} of vectors and a matrix P = (pij)li,j=1 whose entries
satisfy the conditions pij � 0 and

∑l
j=1 p

i
j = 1. Suppose that during the time

∆t, ∆t → 0, the particles of any aggregate Sεi = εi1T1 + · · ·+ εinTn interact with
one another with probability λi∆t+ o(∆t), where λi > 0, and that an interaction
of several groups of this kind during the time ∆t can occur only with probability
o(∆t). As the result of this interaction, the complex Sεi of interacting particles is

replaced with probability pij by a new aggregate Sεj of particles, where
∑l
i=1 p

i
j = 1

and pii = 0; the group Sα = α1T1 + · · ·+ αnTn of particles passes into the group
Sα−εi+εj = (α1 − εi1 + ε

j
1)T1 + · · ·+ (αn − εin + εjn)Tn of particles. Then it follows

from the above assumptions that

aαα = −
l∑
i=1

λiα
[εi1]
1 · · ·α[ε

i
n]
n , aαβ =

∑
i,j:β=α−εi+εj

λiα
[εi1]
1 · · ·α

[εin]
n p

i
j (α �= β).

(3.6)
For the Markov process under consideration (belonging to the class B2) each of

the possible vectors γ1, . . . , γl in the interaction scheme (1.9) belongs to the set
A = {ε1, . . . , εl} of interaction complexes. The second Kolmogorov equation for
the generating function (1.10) of the transition probabilities becomes

∂Fα(t; s)

∂t
=

l∑
i=1

λi(hi(s) − sε
i

)
∂ε
i

Fα(t; s)

∂sε
i , Fα(0; s) = s

α,

where hi(s) =
∑l
j=1 p

i
js
εj for i = 1, . . . , l.

A state γ is said to be attainable from a state α, α → γ, if there is a t0 < ∞
such that Pαγ(t0) > 0. Suppose that some power of the matrix P has only positive
entries (the ergodicity condition [30]). Then εi → εj for any i, j = 1, . . . , l, and if
α→ γ, then γ → α as well, that is, the set Kα = {γ : α→ γ} forms a closed class
of communicating states.

Theorem 3.3 [40]. Let the matrix P satisfy the ergodicity condition and let there
be an n-tuple q = (q1, . . . , qn) of positive numbers such that

l∑
i=1

λip
i
jq
εi − λjqε

j

= 0, j = 1, . . . , l. (3.7)

Then for any initial state α of the Markov process there is a limit stationary
distribution {qαγ, γ ∈ Kα} in the class Kα,

qαγ = lim
t→∞

Pαγ(t), α, γ ∈ Kα,

and the generating function of the stationary probabilities is of the form

fα(s) =
∑
γ∈Kα

qαγs
γ =

( ∑
γ∈Kα

qγ

γ!

)−1( ∑
γ∈Kα

qγsγ

γ!

)
. (3.8)
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Proof. Let the class Kα be finite. In a finite closed class of states of a Markov
process with continuous time a limit distribution always exists, and it is unique
[30]; to prove the theorem, it suffices to show that the generating function (3.8)
satisfies the stationary second equation (3.5):

l∑
i=1

λi(hi(s) − sε
i

)
∂ε
i

∂sεi

( ∑
γ∈Kα

qγsγ

γ!

)

=
l∑
i=1

λi

( l∑
j=1

pijs
εj − sε

i

)
qε
i ∑
γ∈Kα

qγ−ε
i

sγ−ε
i

(γ − εi)!

=

( l∑
j=1

l∑
i=1

λip
i
js
εj qε

i

−
l∑
i=1

λis
εiqε

i

)( ∑
γ∈Kα

qγ−ε
1

sγ−ε
1

(γ − ε1)!

)

=

( ∑
γ∈Kα

qγ−ε
1

sγ−ε
1

(γ − ε1)!

) l∑
j=1

sε
j

( l∑
i=1

λip
i
jq
εi − λjqε

j

)
= 0,

because the second factor vanishes by the condition (3.7).
If the class Kα is infinite, then we again use the stationary equation (3.5) and

a sufficient condition for the existence of the limit distribution in a closed class of
states of a Markov process ([30], Chap. 3, § 6, [12]), namely, the existence of a non-
trivial absolutely summable solution of the stationary second Kolmogorov system
of equations. This completes the proof of Theorem 3.3.

Particular cases. The stationary distribution (3.8) for a system of interacting par-
ticles is connected with fundamental concepts of equilibrium statistical physics.
Let the classes of communicating states be formed by the sets KE = {γ ∈ Nn :
γ1+ · · ·+ γn = E}, E = 0, 1, 2, . . ., and let there be a vector q satisfying the condi-
tions (3.7). The limit distribution in the class KE is determined by the generating
function of a polynomial distribution,

fE(s) =

( ∑
γ∈KE

qγ

γ!

)−1( ∑
γ∈KE

qγsγ

γ!

)

=

( n∑
i=1

qi

)−E( n∑
i=1

qisi

)E
= (q̃1s1 + · · ·+ q̃nsn)E , (3.9)

where q̃i = qi
(∑n

i=1 qi
)−1
for i = 1, . . . , n. The distribution (3.9) is the ‘micro-

canonical’ distribution [79], which holds for closed systems of interacting particles.
If there were E particles of arbitrary types for t = 0, then as t→∞ the particles are
distributed with respect to the types T1, . . . , Tn independently of one another with
probability distribution {q̃1, . . . , q̃n}. The distribution (3.9) was obtained in [79]
for bimolecular processes (in which case |εi| = 2, i = 1, . . . , l) under symmetry-type
assumptions on the densities (3.6).
Let there be only one type T of particle and two interaction complexes ε1 = 0 and

ε2 = 1, that is, let us consider the scheme of transmutations 0 → T and T → 0.
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The entire set N = {0, 1, . . .} of states forms a closed class, and the stationary
distribution is the Poisson distribution {qαγ = qγe−q/γ!, γ ∈ N}. This process
is treated in [92] as an open system of interacting particles for which the Poisson
distribution is interpreted as the ‘canonical’ distribution. Other special cases with
two interaction complexes were discussed in [121].
Theorem 3.3 generalizes known results for branching processes with several

types of particles, namely, assertions about the limit stationary distribution for a
subcritical branching process with immigration ([106], Chap. 7, § 3) and the limit
distribution in the final class of a branching process ([106], Chap. 4, § 7).

§ 3.3. Method of the exponential generating function
The exponential generating function was introduced in [39] to compute the prob-

ability of degeneration of a branching process with the interaction scheme εT → kT
(for ε = 2, 3, . . .); the probability of degeneration for the scheme T → kT was stud-
ied in [106], [33], and elsewhere. In [41] the method was applied to calculate the final
probabilities of a process with the scheme εT1 → γ1T1 + γ2T2 (ε = 2, 3, . . .), and
limit theorems were obtained for the number of final particles of type T2 when the
initial number of particles of type T1 is large; moreover, the scheme T1 → γ1T1+γ2T2
studied in [106] (Chap. 5, §§ 4, 5) was generalized. Along with the results indi-
cated below, the method of exponential generating function was developed in [51],
[59], [58].

3.3.1. Population with two sexes. Let us consider a homogeneous Markov
process ξ(t) = (ξ1(t), ξ2(t)), t ∈ [0,∞), on the state space N2 with the transition
probabilities P

(α1,α2)
(β1,β2)

(t). Let the transition probabilities have the following form as

t→ 0+ (for some λ > 0):

P
(α1,α2)
(α1,α2)

(t) = 1− α1α2λt+ o(t), and

P
(α1,α2)
(β1,β2)

(t) = pβ1−α1+1,β2−α2+1α1α2λt+ o(t)
(3.10)

for α1 �= β1 or α2 �= β2. Here the probability distribution {pγ1γ2 , p11 = 0} is given.
With the help of the generating functions (|s1| � 1, |s2| � 1)

F(α1,α2)(t; s1, s2) =
∞∑

β1,β2=0

P
(α1,α2)
(β1,β2)

(t)sβ11 s
β2
2 , h(s1, s2) =

∞∑
γ1,γ2=0

pγ1γ2s
γ1
1 s
γ2
2 ,

the second Kolmogorov system of differential equations for the process ξ(t) can be
represented as

∂Fα(t; s)

∂t
= λ(h(s1, s2)− s1s2)

∂2Fα(t; s)

∂s1∂s2
, Fα(0; s) = s

α.

Corresponding to a process ξ(t) of class B2 is the interaction scheme T1 + T2 →
γ1T1 + γ2T2. Let the process be in the initial state (α1, α2). Following § 1.3.1, we
can assume that in a random time τ(α1,α2) with P{τ(α1,α2) � t} = 1 − e−α1α2λt
there is an interaction of a particle of type T1 with a particle of type T2. These two
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particles transform into a group of γ1 particles of type T1 and γ2 particles of type T2
with probability distribution {pγ1γ2}; the process passes to the state corresponding
to the vector (α1 + γ1 − 1, α2 + γ2 − 1). The further evolution of the stochastic
process is similar. The branching process ξ(t) is a model of a population with
male individuals and female individuals ([118], [58]). The main assumptions of the
model are as follows: any pair of individuals T1 + T2 in the population generates
descendants independently of the others; the frequency of acts of generation of new
individuals is proportional both to the number of individuals of type T1 and to the
number of individuals of type T2.
The states (γ1, 0), (0, γ2), γ1, γ2 ∈ N, are absorbing for the process ξ(t) (particles

of only one type remain, and no interaction is possible). From symmetry arguments
it suffices to consider the final probabilities of the form

q
(α1,α2)
(0,γ2)

= lim
t→∞

P
(α1,α2)
(0,γ2)

(t), γ2 ∈ N.

The exponential generating function

g(0,γ2)(z1, z2) =
∞∑

α1,α2=0

zα11 z
α2
2

α1!α2!
q
(α1,α2)
(0,γ2)

(3.11)

satisfies the stationary first Kolmogorov equation (the equation (3.2)),[
h

(
∂

∂z1
,
∂

∂z2

)
− ∂2

∂z1∂z2

]
g(0,γ2)(z1, z2) = 0. (3.12)

It follows from obvious equalities for the final probabilities (of the form q
(0,γ2)
(0,γ2)

= 1,

q
(0,α2)
(0,γ2)

= 0 for α2 �= γ2, and q(α1,0)(0,γ2)
= 0 for α1 = 0, 1, . . .) that the following

boundary conditions hold:

g(0,γ2)(0, z2) =
zγ22
γ2!
, g(0,γ2)(z1, 0) = 0. (3.13)

The following is the characteristic equation for the partial differential equation
(3.12) with constant coefficients:

h(s1, s2)− s1s2 = 0 (3.14)

(cf. [106], Chap. 2, § 1, (9) and [33], Chap. 5, § 4, (2) for the scheme T → kT ).
The problem of finding the probability q

(α1,α2)
(0,γ2)

coincides with the problem of

the stopping probability at the boundary for a homogeneous random walk in the
plane quadrant N2 [85] (see also [90]), in which the main role is played by the mul-
tivalued function (of a complex variable) defined by the equation (3.14) ([84], [25]).
The analytic apparatus developed in [84] clarified the role of elliptic functions in the
solution of problems on multidimensional walks with boundaries. In [31] an integral

representation for q
(1,α2)
(0,γ2)

containing the functions cn u and snu was found in the

symmetric case h(s1, s2) = p01s
2
1s2 + p10s1s

2
2 + p10s1 + p01s2 by using the methods
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of [84]. In [85] one can find references concerning the boundary-value problem of
the form (3.12), (3.13).

Integral representation for the final probabilities in the case h(s1, s2) = p20s
2
1 +

p02s
2
2 + p00. The equation (3.12) becomes

p20
∂2g(0,γ2)

∂z21
+ p02

∂2g(0,γ2)

∂z22
+ p00 g(0,γ2) −

∂2g(0,γ2)

∂z1∂z2
= 0 (3.15)

with the boundary conditions (3.13). The reduction of the equation (3.15) of hyper-
bolic type to the canonical form gives the telegraph equation. For (3.15) we obtain
a Darboux–Picard problem, namely, the conditions (3.13) are given on two mono-
tone curves going out from the point (0, 0) and staying in a characteristic angle with
vertex at the same point (0, 0). In [61], on the basis of the Riemann formula for the
telegraph equation ([11], [113]), a solution of the boundary-value problem (3.15),
(3.13) was constructed in the form of a series in Bessel functions of integral order.
After some manipulations, the solution is summed to an integral representation
containing an elliptic function. We present the main result of [51], [61].

Let ω and ω′ be positive numbers. We set h = e−πω
′/ω and z = eπiu/(2ω). Let

us define the doubly periodic function (for γ = 1, 2, . . .)

fγ(u) =

(
πi

ω

)γ[
1

(z − z−1)γ +
∞∑
r=1

(
hrz−1

1− h2rz−2

)γ
+
∞∑
r=1

(
−hrz
1− h2rz2

)γ]
. (3.16)

The periods are 4ω and 2iω′ for odd γ and 2ω and 2iω′ for even γ. Up to a constant
summand, the function f2(u) coincides with the Weierstrass elliptic function ([35],
Chap. 2, § 12), and the convergence of the series (3.16) was studied in [35].

Theorem 3.4. Let a Markov process on the state space N2 be given by the rela-
tions (3.10) and let h(s1, s2) = p20s

2
1 + p02s

2
2 + p00. Let

C =
1−
√
1− 4p20p02

1 +
√
1− 4p20p02

, C0 =
p20p00

1− 4p20p02
.

Let fγ2(u) be the elliptic function (3.16) with the half-periods ω=π
√
C0 and ω

′=−√
C0 lnC, and let T = {u = x+iy, 0 � x � 4ω, y = −ω′} be a segment oriented with
respect to increasing x. The exponential generating function of the final probabilities
is

g(0,γ2)(z1, z2) =
1

2πi

∫
T

ez1s1(z)+z2s2(z)
(−1)γ2
−γ2

dfγ2(u), γ2 = 1, 2, . . . , (3.17)

where z = eπiu/(2ω), and the functions

s1(z) =
1−
√
1− 4p20p02
2p20

i
√
C0

(
z − 1

Cz

)
, s2(z) = i

√
C0

(
z − 1
z

)
,

define a uniformization of the Riemann surface (3.14).
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We denote by η(α1,α2) the number of final particles of type T2 remaining after
degeneration of the process, that is, when there are no particles of type T1. The

random variable η(α1,α2) has the distribution {q(α1,α2)(0,γ2)
,γ2 ∈N;

∑∞
γ2=0

q
(α1,α2)
(0,γ2)

�1};
the expressions for q

(α1,α2)
(0,γ2)

follow from the definition (3.11) of the function

g(0,γ2)(z1, z2) and from (3.17). The explicit formulae for the final probabilities
provide proofs of limit theorems of interest in applications (see [106], [84]) for the
number of final particles as α1 →∞ and α2 →∞.
In [61] solutions of the equation (3.12) were obtained under other assumptions

about the generating function h(s1, s2) of the distribution of the number of descen-
dants of an interacting pair of particles.

3.3.2. Epidemic processes. Let ξ(t) = (ξ1(t), ξ2(t)), t ∈ [0,∞), be a Markov
process with transition probabilities P

(α1,α2)
(β1,β2)

(t) on the set N2, and let the transition

probabilities be of the following form as t→ 0+ (for µ > 0):

P
(α1,α2)
(α1,α2)

(t) = 1− (α1α2 + µα1)t+ o(t), and

P
(α1,α2)
(β1,β2)

(t) = (p2β1−α1+1,β2−α2+1α1α2 + p
1
β1−α1+1,β2−α2µα1)t + o(t)

(3.18)

if α1 �= β1 or α2 �= β2. Let the probability distributions {p2γ1γ2 , p211 = 0} and {p1γ1γ2 ,
p110 = 0} be given. The second Kolmogorov equation for the generating function
F(α1,α2)(t; s1, s2) in the case of the process ξ(t) becomes

∂Fα(t; s)

∂t
=
(
h2(s1, s2)−s1s2

)∂2Fα(t; s)
∂s1∂s2

+µ
(
h1(s1, s2)−s1

)∂Fα(t; s)
∂s1

, Fα(0; s) = s
α;

the interaction scheme is T1 → γ11T1 + γ12T2, T1 + T2 → γ21T1 + γ22T2.
An event {ξ(t) = (β1, β2)} means the existence of β1 particles of type T1 and

β2 particles of type T2 at the time t. The following description is customary in
probabilistic models of the spreading of an epidemic ([6], [4], [24], [5], [115]). The
particles of type T1 are interpreted as sick individuals and the particles of type T2 as
healthy individuals susceptible to the infectious disease. In a random time τ2(β1,β2)
with P{τ2(β1,β2) � t} = 1 − e

−β1β2t there is contact of a particle of type T1 with a

particle of type T2. This pair of particles changes into a new group of γ1 particles
of type T1 and γ2 particles of type T2 with the distribution {p2γ1γ2}; the process
goes to the state corresponding to the vector (β1 + γ1 − 1, β2 + γ2 − 1). Moreover,
in a random time τ1(β1,β2) with P{τ

1
(β1,β2)

� t} = 1 − e−µβ1t a particle of type T1
changes into a group of particles with distribution {p1γ1γ2}; the process goes to the
state corresponding to the vector (β1 + γ1 − 1, β2 + γ2). The random variables
τ1(β1,β2) and τ

2
(β1,β2)

are independent; the process stays in the state (β1, β2) during

the random time τ(β1,β2) = min(τ
1
(β1,β2)

, τ2(β1,β2)).

In [22] the branching process ξ(t) was introduced as a model of a chain reaction
generating neutrons (particles of type T1) with nuclei of heavy elements (particles
of type T2) taken into account, under the assumptions that h2(s1, s2) = h2(s1) and
h1(s1, s2) = 1.
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The states (0, γ2), γ2 ∈ N, are absorbing for the process ξ(t) (the remaining
individuals are healthy). For the final probabilities q

(α1,α2)
(0,γ2)

= limt→∞ P
(α1,α2)
(0,γ2)

(t),

γ2 ∈ N, we introduce (for |s| � 1) the generating functions

f(α1,α2)(s) =
∞∑
γ2=0

q
(α1,α2)
(0,γ2)

sγ2 , Φ(z1, z2; s) =
∞∑

α1,α2=0

zα11 z
α2
2

α1!α2!
f(α1,α2)(s). (3.19)

As in Theorem 3.1, we can find the equation for the double generating function by
using the equation (1.18),[
z2

(
h1

(
∂

∂z1
,
∂

∂z2

)
− ∂2

∂z1∂z2

)
+ µ

(
h2

(
∂

∂z1
,
∂

∂z2

)
− ∂

∂z1

)]
Φ(z1, z2; s) = 0.

(3.20)

The equalities for the final probabilities (q
(0,γ2)
(0,γ2)

= 1 and q
(0,γ2)
(0,α2)

= 0 for α2 �= γ2)
imply the boundary condition Φ(0, z2; s) = e

z2s.

Integral representation for the final probabilities in the case h2(s1, s2) = s1 and
h1(s1, s2) = 1. For the Weiss epidemic process ([126], [114]) the equation (3.20)
becomes

z2Φz1z2 + (µ− z2)Φz1 − µΦ = 0. (3.21)

If the initial state of the process under consideration is of the form (α1, 0), then

a jump to the state (α1 − 1, 0) occurs; hence, the final probabilities are q(α1,0)(0,0)
= 1

for α1 = 0, 1, . . . and q
(α1,0)
(0,γ2)

= 0 for α1=0, 1, . . . and γ2=1, 2, . . . . Therefore,

Φ(z1, 0; s)=e
z1 . Thus, we obtain a Goursat problem for the hyperbolic equa-

tion (3.21), namely, the boundary conditions are given on the characteristics z1 = 0
and z2 = 0 in the form Φ(0, z2; s) = e

z2s and Φ(z1, 0; s) = e
z1 . Partial differential

equations of hyperbolic type whose coefficients are linear functions of the indepen-
dent variables were studied in [19] and [103], § 41. In [43] the author obtained the
Riemann function for the equation (3.21) and the explicit solution

Φ(z1, z2; s) =

∫ ∞
0

(
1 +
1

µ
(s− 1)e−x/µz2

)
e−x+(1−e

−x/µ+se−x/µ)z2J0
(
2
√
−z1x

)
dx.

(3.22)
The definition in (3.19) of the function Φ(z1, z2; s) and the formula (3.22),

together with the power series expansions

ez =
∞∑
i=0

zi

i!
, J0(z) =

∞∑
j=0

(−1)j(z/2)2j
j! j!

,

imply the integral representation

f(α1,α2)(s) =
1

α1!

∫ ∞
0

xα1
[
(1− e−x/µ + se−x/µ)α2

+
1

µ
α2(s− 1)e−x/µ(1− e−x/µ + se−x/µ)α2−1

]
e−x dx.

Integrating the second summand by parts, we obtain the following assertion.
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Theorem 3.5 [43]. Let a Markov process on the state space N2 be given by the
relations (3.18) and let h2(s1, s2) = s1 and h1(s1, s2) = 1. The generating function
of the final probabilities has the form (for α1 �= 0)

f(α1,α2)(s) =
1

(α1 − 1)!

∫ ∞
0

xα1−1(1− e−x/µ + s e−x/µ)α2 e−x dx. (3.23)

Let η(α1,α2) be the number of final particles of type T2 that remain after stopping
the process. The generating function (3.23) defines the distribution of the random
variable η(α1,α2) on the states {(0, γ2), γ2 = 0, . . . , α2}. It follows from (3.23) by
virtue of the formulae (1.4) and (1.5) that for the mean and variance we have

Eη(α1,α2) = α2

(
µ

1 + µ

)α1
, Dη(α1,α2) ∼ α22

((
µ

2 + µ

)α1
−
(
µ

1 + µ

)2α1)

as α2 → ∞. Applying the method of characteristic functions to the expres-
sion (3.23) in the standard way (cf. [106], Chap. 5, § 5, [41]), we obtain a limit
theorem of ‘threshold’ type ([6], [114]).

Theorem 3.6. Let the assumptions of Theorem 3.5 hold and let x ∈ [0, 1]. Then

lim
α2→∞

P

{
η(α1,α2)

α2
� x
}
=

1

(α1 − 1)!

∫ ∞
−µ lnx

yα1−1e−y dy.

A series of limit theorems for η(α1,α2) was established in [114].
In [43] a solution of (3.20) was obtained for h2(s1, s2) = p

2
10s1 + p

2
01s2 + p

2
00 and

h1(s1, s2) = 1.

Deterministic approximation.The relationships between the probabilistic and deter-
ministic descriptions for diverse (Markov) epidemic processes were studied in [6],
[10], [4], and elsewhere. Corresponding to a Weiss epidemic process is a determin-
istic model in the form of the system

ẋ1 = −µx1, ẋ2 = −x1x2

of differential equations [126], where x1(t) is the number of sick individuals and
x2(t) is the number of individuals susceptible to the infectious disease.

3.3.3. Open problems. Below we formulate problems on stationary and final
probabilities for Markov processes of class B2 with schemes that are closest to
those of processes of class B1, which were studied in [106]. Formulation of the
problems for general interaction schemes is possible if the processes of class B2 can
be classified.
1. A classification of the types of particles for branching processes of class B1

was given in [106] (Chap. 4, § 6). A problem is to determine a similar classification
of the types of particles for branching processes of class B2.
2. For a process with immigration of class B2 with the scheme 0 → k0T , T →

k1T , 2T → k2T ([106], Chap. 7, [121], § 9.1, [74]) the second Kolmogorov equation
is

∂Fi(t; s)

∂t
= λ(h2(s) − s2)

∂2Fi(t; s)

∂s2
+ µ(h1(s) − s)

∂Fi(t; s)

∂s
+ ρ(h0(s) − 1)Fi(t; s)
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(where λ � 0, µ � 0, ρ > 0), with the initial condition Fi(0; s) = si. Let the
mean number of particles appearing under pairwise interaction be less than two,
that is, the criticality parameter a2 satisfies a2 = λ(h

′
2(1)−2) < 0. A problem is to

find explicit expressions for the stationary distribution of the Markov process under
particular assumptions about the generating functions h0(s), h1(s), and h2(s).
3. The first Kolmogorov equation for a branching process with two interaction

complexes T → k1T and 2T → k2T is [59]

∂Gj(t; z)

∂t
=

[
λz2
(
h2

(
∂

∂z

)
− ∂

2

∂z2

)
+µz

(
h1

(
∂

∂z

)
− ∂
∂z

)]
Gj(t; z), Gj(0; z) =

zj

j!
.

A problem is to get an integral representation for the degeneration probability qi0.
4. The first equation for a process of class B2 with the interaction scheme

T1 → γ11T1 + γ12T2 and 2T2 → γ21T1 + γ22T2 is

∂Gβ(t; z)

∂t
=

[
λz22

(
h2

(
∂

∂z

)
− ∂

2

∂z22

)
+ µz1

(
h1

(
∂

∂z

)
− ∂

∂z1

)]
Gβ(t; z),

Gβ(0; z) =
zβ

β!
.

A problem is to find the degeneration probabilities q
(α1,α2)
(0,0)

and q
(α1,α2)
(0,1)

.

5. Let us consider the means A1(t) = Eξ1(t) and A2(t) = Eξ2(t) for the branching
process ξ(t) = (ξ1(t), ξ2(t)) in § 3.3.1. If h(s1, s2) = s2h1(s1), then we can readily
see for the initial state (α1, α2) of the process that A1(t) = α1e

α2a1t and A2(t) = α2,
where a1 = λ((∂h1/∂s1)|s=1 − 1) is the criticality parameter. A problem is to
study the asymptotic behaviour of the means A1(t) and A2(t) as t →∞ for other
special assumptions about the generating function h(s1, s2) and to find an integral

representation for the final probabilities q
(α1,α2)
(0,γ2)

for an arbitrary function h(s1, s2).

6. For the Bartlett–McKendrick epidemic process we have h2(s1, s2) = s
2
1 and

h1(s1, s2) = 1 ([6], [24]), and the stationary equation (3.20) becomes

z2Φz1z2 − z2Φz1z1 + µΦz1 − µΦ = 0

with the boundary conditions Φ(0, z2; s) = e
z2s and Φ(z1, 0; s) = e

z1 . A problem
is to find the Riemann function and an integral representation for the generating
function Φ(z1, z2; s). The cumbersome expression obtained in [28], [111] for the

final probabilities q
(α1,α2)
(0,γ2)

is of little use for the asymptotic investigation.

Another problem is to solve the equation (3.20) for h2(s1, s2) = p
2
20s
2
1 + p

2
02s
2
2 +

p210s1 + p
2
01s2 + p

2
00 and h1(s1, s2) = p

1
2s
2
1 + p

1
0 with the boundary conditions

Φ(0, z2; s) = e
z2s and Φ(z1, 0; s) = e

z1q , where q is the root nearest to zero of
the equation p12s

2
1 + p

1
0 − s1 = 0.

7. For the predator-prey Markov process in § 2.3 a problem is to find an integral
representation for the degeneration probability q

(α1,α2)
(0,0) by considering the station-

ary first Kolmogorov equation.
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CHAPTER IV

THIRD KOLMOGOROV EQUATION

The transition probabilities of Markov processes with countable state space
satisfy the first and second systems of differential equations (1.2) and (1.3), which
are linear. The Markov branching process introduced in [71] was described as a
process of evolution of particles; under the assumption that the individual evolving
particles are independent of one another, a non-linear first-order differential equa-
tion was obtained in [71] for the generating functions of the transition probabilities
of such a process. The authors of the paper stressed that “. . . the remark shows
that our ‘branching stochastic processes’ are in fact only a special case of Markov
processes with countable state space. However, we shall obtain an analytic appa-
ratus for this special case which is much more efficient than the apparatus that can
be developed for the general case of Markov processes with countable state space”
(italics due to the authors of [71]). Thus, the paper [71] poses the following ques-
tions. Are there other special cases of Markov processes with countable state space
whose transition probabilities satisfy a non-linear equation? If there are examples of
Markov processes of this kind, then how can one distinguish possible special classes
of Markov processes whose transition probabilities satisfy non-linear equations of
diverse types in the set of all Markov processes?
Methods of investigation of branching stochastic processes have been intensively

developed [106]. Some statements of the theory of Markov branching processes are
briefly presented in § 4.1, where one of the possible ways of deriving a non-linear
equation for the generating function of the transition probabilities of the process is
given. The non-linear equation is a consequence of the branching property.
In § 4.2 we derive a third (non-linear) equation for the processes of class B2

with pair interactions of the form 2T → kT , k = 0, 1, and 2T → 3T ; the exact
solutions of the first and second Kolmogorov equations are known for such processes
of quadratic type. A generalized branching property of the transition probabilities
is discovered by constructing closed solutions of partial differential equations of
parabolic type; we use separation of variables and summation formulae from the
theory of special functions. The non-linear differential equations thus obtained
are first-order partial differential equations. The ways described for constructing
solutions of the linear Kolmogorov equations can be applied to one-dimensional and
multidimensional birth-and-death Markov processes of the types indicated in § 2.1.

§ 4.1. Non-linear equation of the theory of branching processes
On the state space N = {0, 1, 2, . . .} we consider a time-homogeneous Markov

process ξt for t ∈ [0,∞) with transition probabilities Pij(t), and we define the
infinitesimal characteristics aij = (dPij(t)/dt)|t=0+, i, j ∈ N, by the equalities (for
λ > 0)

aij = iλpj−i+1, j � i− 1, j �= i, aii = −iλ, aij = 0, j < i− 1,
for a given probability distribution {pk, k ∈ N; p1 = 0}. With the help of the
generating functions

Fi(t; s) =
∞∑
j=0

Pij(t)s
j , i ∈ N, h(s) =

∞∑
k=0

pks
k, (4.1)
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where |s| < 1, the second system of equations can be represented as

∂Fi(t; s)

∂t
= λ(h(s) − s)∂Fi(t; s)

∂s
, Fi(0; s) = s

i. (4.2)

The double generating function of the transition probabilities

F(t; z; s) =
∞∑
i=0

zi

i!
Fi(t; s) =

∞∑
i,j=0

zi

i!
Pij(t)s

j =
∞∑
j=0

Gj(t; z)s
j (4.3)

satisfies the Kolmogorov equations (1.18) and (1.19):

∂F

∂t
= λz

(
h

(
∂

∂z

)
− ∂
∂z

)
F, (4.4)

∂F

∂t
= λ(h(s) − s)∂F

∂s
, F(0; z; s) = ezs. (4.5)

Solving the first-order linear partial differential equation (4.2) by standard meth-
ods [63], we obtain the branching property of the stochastic process under consid-
eration:

Fi(t; s) = F
i
1(t; s), i ∈ N, (4.6)

that is, the transition probabilities satisfy the condition (see [106], Chap. 1, § 1, (5))

Pij(t) =
∑

j1+j2+···+ji=j
P1j1(t)P1j2(t) · · ·P1ji(t). (4.7)

Indeed, let the function F1(t; s) be a solution of the equation (4.2) with the initial
condition s; then by substitution in (4.2) we can readily see that the function
F i1(t; s) satisfies (4.2) with the initial condition s

i. The branching property (4.6),
together with the uniqueness condition a = λ(h′(1)−1) <∞ for a solution of (4.2),
was studied in [33], (Chap. 5, § 4).
It follows from (4.6) that the double generating function satisfies the equality

F(t; z; s) =
∞∑
i=0

zi

i!
F i1(t; s) = e

zF1(t;s). (4.8)

Substituting the expression (4.8) in the first equation of (4.4), we obtain the fol-
lowing ordinary differential equation for the generating function F1(t; s) (see [106],
Chap. 1, § 4, Theorem 5 and [33], Chap. 5, § 9, (9.1)):

∂F1(t; s)

∂t
= λ
(
h(F1(t; s))− F1(t; s)

)
, F1(0; s) = s. (4.9)

Thus, for Markov process ξt of class B1 we have three equations: the first and
second Kolmogorov equations and the non-linear equation (4.9).
Corresponding to the process ξt is the transmutation scheme T → kT ; a state j

of the process is interpreted as the existence of j particles of type T . A particle can
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have descendants, that is, an aggregate of k particles of type T with the probability

distribution {pk}; each of i initial particles has randomly many descendants ξ(l)t
(l = 1, . . . , i) at a time t, and the following relation holds ([106], Chap. 1, § 2):

ξt = ξ
(1)
t + · · ·+ ξ

(i)
t . (4.10)

The branching property of the transition probabilities (4.7) means that the random

variables ξ
(l)
t , l = 1, . . . , i, are independent and identically distributed. The gen-

eral theory of branching processes includes the construction of both the space of
elementary events that consists of a description of the evolution of the individual
particles that existed during the time interval [0, t], which is a set of trees, and the
corresponding probability measure on the trees ([106], Chap. 12). In Fig. 5 (§ 5.3)
we show an example of a realization of a branching process on this state space.
The relationship of the characteristics of branching processes with those of random
trees and forests was studied in [67] (see also the survey in [68], § 1.9).
It follows from the first and second equations (4.4) and (4.5) that

(h(s) − s)∂F
∂s
− z
(
h

(
∂

∂z

)
− ∂
∂z

)
F = 0.

Substituting the expression (4.8) into the last equation, we obtain the following
equation for the generating function F1(t; s):

(h(s) − s)∂F1
∂s
− (h(F1) − F1) = 0. (4.11)

Let us note special cases of the branching property (4.6). It follows from the
explicit solutions of the Kolmogorov equations (see 2.1.1) that for a simple death
process of linear type for which h(s) = 1 (ai,i−1 = iλ, aii = −iλ) we have

Fi(t; s) = (1− e−λt + s e−λt)i, i ∈ N. (4.12)

For a pure birth process of linear type with h(s) = s2 (aii = −iλ, ai,i+1 = iλ) we
have

Fi(t; s) =

(
s e−λt

1− s (1− e−λt)

)i
, i ∈ N. (4.13)

For a birth-and-death process of linear type with h(s) = p0 + p2s
2 (ai,i−1 = iλp0,

aii = −iλ, and ai,i+1 = iλp2) the expression for Fi(t; s) is given by the for-
mula (2.11).

§ 4.2. Branching process with pair interactions
Let us consider a Markov process ξt of class B2 on the state space N for t ∈ [0,∞).

We define the infinitesimal characteristics of the process as follows (for λ > 0):

aij = i(i− 1)λpj−i+2, j � i− 2, j �= i, aii = −i(i− 1)λ, aij = 0, j < i− 2,
(4.14)
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where {pk, k ∈ N; p2 = 0} is some probability distribution. The generating
function (4.1) of the transition probabilities Pij(t) of the process ξt satisfies the
second-order partial differential equation of parabolic type

∂Fi(t; s)

∂t
= λ(h(s) − s2)∂

2Fi(t; s)

∂s2
, Fi(0; s) = s

i. (4.15)

The double generating function (4.3) satisfies the Kolmogorov equations

∂F

∂t
= λz2

(
h

(
∂

∂z

)
− ∂

2

∂z2

)
F ,

∂F

∂t
= λ(h(s) − s2)∂

2F

∂s2
, F(0; z; s) = ezs.

Hence,

(h(s) − s2)∂
2F

∂s2
− z2
(
h

(
∂

∂z

)
− ∂

2

∂z2

)
F = 0. (4.16)

The investigation of the equation (4.15) was begun in [104]. The Cauchy prob-
lem (4.15) admits a solution having a probabilistic meaning, as follows from the
existence of a solution of the second system of differential equations for the transi-
tion probabilities ([26], [30]). In [104] it was shown that if the criticality parameter
a satisfies the condition a = λ(h′(1)−2) � 0, then the solution of problem (4.15) is
unique, and the following regularity condition for the branching process is satisfied
([106], Chap. 1, § 5): lims↑1 Fi(t; s) ≡ 1.
In [3] the asymptotic behaviour as t →∞ of the probability Qi(t) = P{ξt > 0 |

ξ0 = i} = 1 − Fi(t; 0) of continuation was studied for a critical branching process
(a = 0). It was shown that Q2(t) = o(e

−δt) for some δ > 0; methods of operational
calculus were applied in [3] to (4.15). In [54], [55] an explicit solution of (4.15) was
found for h(s) = s4/2 + 1/2, and the exact asymptotics for Qi(t) was given in this
case.
Below we present results for which a preliminary exposition was given in [47], [50].

The branching property (4.6) plays the main role in the derivation of the non-
linear equation of the theory of branching processes. The property (4.6) fails to
hold for the transition probabilities of a branching process ξt with the scheme
2T → kT ; however, an analogue of (4.6) was discovered and a generalization of the
equation (4.11) can be given.

Deterministic approximation. Branching processes with the schemes 2T → 0
(h(s) = 1) and 2T → T (h(s) = s) for large initial numbers of particles were studied
in [88], [89] in comparison with the law of active mass. If x(t) is the amount of the
reagent at time t for a bimolecular reaction with the scheme 2T → kT , k = 0, 1 (in
the probabilistic model h(s) = p0 + p1s), then in formal kinetics the law assumed
is [23]

ẋ = ax2,

where a is the reaction rate constant (a = λ(h′(1)− 2) < 0).
4.2.1. Solution of the first and second equations for a death process of
quadratic type. The construction of a closed solution of the linear equation

∂Fi(t; s)

∂t
= λ(p0 + p1s− s2)

∂2Fi(t; s)

∂s2
, Fi(0; s) = s

i, (4.17)
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for a death process of quadratic type such that h(s) = p0+p1s (ai,i−2 = i(i−1)λp0,
ai,i−1 = i(i−1)λp1, aii = −i(i−1)λ) leads to an integral representation for Fi(t; s)
generalizing the formula (4.12) for a death process of linear type.
Below, for a function H(v; s) of two variables we use the notation [H(v; s)]′v =

∂H(v; s)/∂v. We denote the imaginary unit by ω, ω2 = −1.

Theorem 4.1. Let a Markov process on the state space N be given by the infini-
tesimal characteristics (4.14), and let h(s) = p0 + p1s. The generating function of
the transition probabilities is

Fi(t; s) = 1 +
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

[∫ 1
cos 2v

1√
y − cos 2v

×
(
1

2πω

∮
0+

( 1
2p1(η − 1)−

1
2(1 + p0)

√
1− 2ηy + η2 + s

η

)i

× dη√
1− 2ηy + η2

)
dy

]′
v

dv, i ∈ N. (4.18)

Proof. Let us consider the partial differential equations (for |s| < 1)

∂F

∂t
= λz2

(
p0F + p1

∂F

∂z
− ∂

2F

∂z2

)
, (4.19)

∂F

∂t
= λ(p0 + p1s− s2)

∂2F

∂s2
, F(0; z; s) = ezs. (4.20)

(a) Method of separation of variables. We seek a solution in the form of Fourier
series

F(t; z; s) =
∞∑
n=0

AnC̃n(z)Cn(s)e
−λnt. (4.21)

Substituting (4.21) into the equations (4.19) and (4.20), we obtain equations for

the functions C̃n(z) and Cn(s):

λz2(p0C̃n(z) + p1C̃
′
n(z) − C̃ ′′n(z)) + λnC̃n(z) = 0, (4.22)

λ(p0 + p1s− s2)C ′′n(s) + λnCn(s) = 0, n = 0, 1, . . . . (4.23)

The differential equations (4.17) and (4.23) were studied in [88] for p0 = 0 and
for p0 = 1. Following the lines of [88], one can show by using the assumptions
about the Markov process under consideration that the equation (4.23) satisfies the
boundary condition of the form “Cn(s) is a polynomial.” In this case, there is a
sequence of ‘eigenvalues’ λn = n(n−1)λ, n = 0, 1, . . . ([64], Part. II, Chap. 3, § 9.7),
and corresponding to every λn is an ‘eigenfunction’

Cn(s) = C
−1/2
n

(
2s− p1
1 + p0

)
,
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where C
−1/2
n (s) are the Gegenbauer polynomials ([73], cf. (52.4) for σ = −1/2):

C−1/2n (s) =

[n/2]∑
k=0

(−1)k(−1/2)(−1/2 + 1) · · · (−1/2 + n− k − 1)
k! (n− 2k)! (2s)n−2k . (4.24)

Accordingly, (4.22) becomes

z2(p0C̃n(z) + p1C̃
′
n(z) − C̃ ′′n(z)) + n(n − 1)C̃n(z) = 0 (4.25)

and can be reduced to the Bessel equation ([73], cf. (44.1) for α = −1/2, β = 1,
γ2 = −1, and ν = n − 1/2). It follows from the conditions on the Markov process
that a solution of interest is analytic in the entire complex plane; following [73], we
obtain

C̃n(z) = −
√
π(1 + p0)z e

p1z/2In−1/2((1 + p0)z/2),

where In−1/2(z) are the modified Bessel functions. Thus, the desired series (4.21)
is of the form

F(t; z; s) = −
√
π(1 + p0)z

×
∞∑
n=0

Ane
p1z/2In−1/2

(
(1 + p0)z

2

)
C−1/2n

(
2s− p1
1 + p0

)
e−n(n−1)λt.

The values of An can be determined by comparing the initial conditions F(0; z; s)
= ezs with the Sonin expansion for the exponential function (see [73], (53.2) and
[100], the sum (5.13.3.3)),

ezs = −
√
2πz

∞∑
n=0

(
n− 1
2

)
In−1/2(z)C

−1/2
n (s).

Hence, An = n− 1/2, and we obtain the expression

F(t; z; s) = −
√
π(1 + p0)z

×
∞∑
n=0

(
n− 1
2

)
ep1z/2In−1/2

(
(1 + p0)z

2

)
C−1/2n

(
2s− p1
1 + p0

)
e−n(n−1)λt.

(4.26)

The convergence of the series (4.26) for any z and s and any t ∈ [0,∞) follows from
the convergence of the Sonin expansion.

(b) Integral representation. Let us use the following formulae ([99], the integral
(2.5.36.1), [100], the integral (2.17.1.7)):

e−n(n−1)λt =
eλt/4√
πλt

∫ ∞
−∞
e−v

2/(λt) cos(2n− 1)v dv, n = 0, 1, . . . ,

sin(2n− 1)v = 2n− 1
2
√
2

∫ 1
cos 2v

Pn−1(y) dy√
y − cos 2v , n = 1, 2, . . . ,
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where the Pn(y) are the Legendre polynomials. Differentiating the last expression,
we obtain the following integral representation for the exponential function:

e−n(n−1)λt =
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

[∫ 1
cos 2v

Pn−1(y) dy√
y − cos 2v

]′
dv, n = 1, 2, . . . .

(4.27)
Let us consider another solution of (4.25),

D̃n(z) =
√
(1 + p0)z/π e

p1z/2Kn−1/2((1 + p0)z/2),

where Kn−1/2(z) is the Macdonald function ([8], Chap. 7, § 2), that is,√
2z

π
Kn−1/2(z) = e

−z
n−1∑
k=0

(n− 1 + k)!
k! (n− 1− k)!(2z)k . (4.28)

We can verify the integral relation

Cn(s) = −
2

1 + p0

1

2πω

∮
0+

esξ−p1ξ

ξ2
D̃n(ξ) dξ, n = 2, 3, . . . , (4.29)

where the integration contour goes around the point 0 in the complex plane in the
positive direction, by straightforward calculations using the explicit expressions
(4.24) and (4.28).
Let us substitute the integral (4.27) in the series (4.26) and replace Cn(s) by the

integral (4.29). One can readily justify changing the order of summation, integra-
tion, and differentiation, and hence

F(t; z; s) = ep1z/2 cosh
(1 + p0)z

2
+ ep1z/2 sinh

(1 + p0)z

2

2s− p1
1 + p0

+
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

[∫ 1
cos 2v

1√
y − cos 2v

(
1

2πω

∮
0+

esξ+p1z/2−p1ξ/2

ξ2

× 2

1 + p0

∞∑
n=2

(
n− 1
2

)√
π(1 + p0)z In−1/2

(
(1 + p0)z

2

)

×
√
(1 + p0)ξ

π
Kn−1/2

(
(1 + p0)ξ

2

)
Pn−1(y) dξ

)
dy

]′
v

dv. (4.30)

Up to the first summand, the series in (4.30) coincides with the Gegenbauer addi-
tion formula for cylindrical functions ([73], the last formula in § 53, [100], the sum
(5.10.3.5)), namely, if |z| < |ξ| and |y| � 1, then
∞∑
n=1

(
n − 1
2

)√
2πz In−1/2(z)

√
2ξ

π
Kn−1/2(ξ)Pn−1(y) =

zξe−
√
z2+ξ2−2zξy√

z2 + ξ2 − 2zξy
. (4.31)

Substituting the sum (4.31) into (4.30) and carrying out some manipulations related
to the first summand of the series, we arrive at the integral representation

F(t; z; s) = ez +
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

[∫ 1
cos 2v

1√
y − cos 2v

×
(
1

2πω

∮
0+

esξ+p1z/2−p1ξ/2−(1+p0)
√
z2+ξ2−2zξy/2 zdξ

ξ
√
z2 + ξ2 − 2zξy

)
dy

]′
v

dv.
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Let us make the change of variable ξ = z/η in the third integral; we thus obtain
the following expression for the double generating function:

F(t; z; s) = ez +
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

[∫ 1
cos 2v

1√
y − cos 2v

×
(
1

2πω

∮
0+

ezη
−1(s+p1(η−1)/2−(1+p0)

√
η2+1−2ηy/2) dη√

η2 + 1− 2ηy

)
dy

]′
v

dv.

The formula (4.18) follows from the definition (4.3) and the expansion ezx =∑∞
i=0(z

i/i!)xi by equating the coefficients of like powers of z. This proves Theo-
rem 4.1.

4.2.2. Third equation for a death process of quadratic type. The integral
with respect to η in (4.18) can be evaluated by using the generating function of the
Legendre polynomials

Pn(y) =
1

2πω

∮
0+

1√
1− 2ηy + η2

dη

ηn+1
, n = 0, 1, . . . . (4.32)

The Legendre polynomials have the following integral representation as well ([34],
Chap. 5, § 24, (109)):

Pn(y) =
1

2π

∫ 2π
0

dψ

(y + ω
√
1− y2 cosψ)n+1

, n = 0, 1, . . . .

We make the change of variable x = ω(ψ + π/2) in the last integral. This gives

Pn(y) =
1

2πω

∫
T

dx

(y +
√
1− y2 sinhx)n+1

, n = 0, 1, . . ., (4.33)

where T = {x = ωu, π/2 � u � 5π/2} is a segment in the complex plane ori-
ented in increasing order of u. The representation (4.32) for Pn(y) is related to the

integral (4.33) by the change of variable η = (
√
1− y2ex+2y−

√
1− y2e−x)/2 (inte-

gral representations for the Legendre polynomials and the corresponding changes
of variables are considered in [34], Chap. 1, § 8.19).
In the integral (4.18) we make the above change of variable η. The generalized

branching property for a death process of quadratic type is

Fi(t; s) =
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

×
[ ∫ 1
cos 2v

1√
y − cos 2v

(
1

2πω

∫
T

ϕi(x, y; s) dx

)
dy

]′
v

dv, (4.34)

where the function ϕ is linear in the variable s,

ϕ(x, y; s) =
−12
(
p0
√
1− y2 ex + p1(1− y) +

√
1− y2 e−x

)
+ s

1
2

(√
1− y2 ex + 2y −

√
1− y2 e−x

) .
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Substituting the double generating function

F(t; z; s) =
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

×
[∫ 1
cos 2v

1√
y − cos 2v

(
1

2πω

∫
T

ezϕ(x,y;s) dx

)
dy

]′
v

dv

in the equation (4.16), we obtain a non-linear first-order partial differential equation
for the generating function ϕ(x, y; s):

(h(s) − s2)
(
∂ϕ

∂s

)2
− (h(ϕ) − ϕ2) = (1 + p0)

∂ϕ

∂x
, (4.35)

where h(s) = p0 + p1s.

4.2.3. Third equation for a birth process of quadratic type. For a birth
process in which h(s) = s3 (aii = −i(i − 1)λ, ai,i+1 = i(i− 1)λ), the construction
of the exact closed solution of the equation

∂Fi(t; s)

∂t
= λ(s3 − s2)∂

2Fi(t; s)

∂s2
, Fi(0; s) = s

i,

leads to an integral representation for Fi(t; s) generalizing the above formula (4.13)
for a birth process of linear type.

Theorem 4.2. Let a Markov process on the state space N be given by the infin-
itesimal characteristics (4.14), and let h(s) = s3. The generating function of the
transition probabilities has the form (with F0(t; s) ≡ 1)

Fi(t; s) =
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

×
[∫ 1
cos 2v

1√
y − cos 2v

(
1

2πω

∫
T

sϕi−1(x, y; s) dx

)
dy

]′
v

dv, (4.36)

i = 1, 2, . . . , where T = {x = ωu, π/2 � u � 5π/2} is a segment on the complex
plane oriented in increasing order of u and the function ϕ is linear-fractional with
respect to the variable s,

ϕ(x, y; s) =
s12
(√
1− y2 ex + 2y −

√
1− y2 e−x

)
1− s1

2

(
−
√
1− y2 ex + 1− y

) .

Proof. In the quadratic case the expressions (2.9) for the transition probabilities of
a Markov pure birth process become P0j(t) = δ

0
j , P1j(t) = δ

1
j , Pij(t) = 0 for i > j,

and

Pij(t) =
(j − 1)! (j − 2)!
(i− 1)! (i− 2)!

×
j∑
n=i

(−1)n−i(2n− 1)(n+ i− 2)!
(j − n)! (j + n− 1)! (n− i)! e

−n(n−1)λt , 2 � i � j. (4.37)
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The definition (4.1) of the generating function Fi(t; s) and the formula (4.36)
imply the integral representation (for 2 � i � j)

Pij(t) =
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

[∫ 1
cos 2v

1√
y − cos 2v

(
1

2πω

∫
T

(
j − 2
j − i

)

×
(
1

2
(
√
1− y2ex + 2y −

√
1− y2e−x)

)i−1

×
(
1

2
(−
√
1− y2ex + 1− y)

)j−i
dx

)
dy

]′
v

dv.

The proof of the theorem amounts to computing the triple integral, which leads
to the expressions (4.37). The integral with respect to x is immediate and gives a
linear combination of Legendre polynomials Pn(y); next we use the integral (4.27).
For j = i, i+ 1, i+2 some easy manipulations lead to the following expressions for
the transition probabilities:

Pii(t) = e
−i(i−1)λt, Pi,i+1(t) =

i− 1
2

(
e−i(i−1)λt − e−(i+1)iλt

)
,

Pi,i+2(t) =
i(i+ 1)

4(2i+ 1)

(
(i+ 1)e−i(i−1)λt− (2i+ 1)e−(i+1)iλt + ie−(i+2)(i+1)λt

)
.

We then use induction on j. This completes the proof of Theorem 4.2.

An equation for the generating function ϕ(x, y; s) follows from the generalized
branching property (4.36). We substitute the double generating function

F(t; z; s) = 1 +
eλt/4

2
√
2πλt

∫ ∞
−∞
e−v

2/(λt)

×
[∫ 1
cos 2v

1√
y − cos 2v

(
1

2πω

∫
T

s

ϕ(x, y; s)
(ezϕ(x,y;s) − 1) dx

)
dy

]′
v

dv

in the equation (4.16) and obtain the third equation

(h(s) − s2)
(
∂ϕ

∂s

)2
− (h(ϕ) − ϕ2) = ϕ2 ∂ϕ

∂x
, (4.38)

where h(s) = s3. For the partial differential equations (4.35) and (4.38) we can find
the complete integrals by standard methods [63].

§ 4.3. The branching property and the
Green function for parabolic equations

In § 4.2 we obtained the non-linear equations (4.35) (for a death process) and
(4.38) (for a birth process), and they differ by a factor on the right-hand side. This
difference is eliminated by studying the unifying case, that is, a birth-and-death
Markov process of quadratic type for which h(s) = p0 + p1s+ p3s

3. To derive the
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third equation, it is necessary to reveal the generalized branching property, that is,
to find the exact solution of the parabolic differential equation

∂Fi(t; s)

∂t
= λ(p0 + p1s+ p3s

3 − s2)∂
2Fi(t; s)

∂s2
, Fi(0; s) = s

i, (4.39)

in a form similar to the branching property (2.11) (the desired integral representa-
tion of the solution contains a linear-fractional function of the variable s).
In a cycle of papers in 1982–1995 (see [80]–[82] and other papers), Letessier

and Valent obtained solutions (in the form of series in special functions) of the sec-
ond Kolmogorov equation for certain birth-and-death processes of quadratic, cubic,
and biquadratic types by using the method of separation of variables. Applying
the methods of [120], one can show that a solution of (4.39) having probabilistic
meaning (that is, analytic in the circle |s| < 1) can be represented by a Fourier
series

Fi(t; s) =
∞∑
n=0

AnCn(s)e
−λnt, |s| < 1, (4.40)

where the eigenvalues are λn = n(n−1)λK and the constantK > 0 can be expressed
in terms of the elliptic integral∫

ds√
p0 + p1s+ p3s3 − s2

.

The equation
(p0 + p1s+ p3s

3 − s2)C ′′n(s) + λnCn(s) = 0 (4.41)

for the eigenfunction Cn(s) belongs to the class of Heun equations (a second-order
Fuchsian equation with four singular points ([9], Chap. 15, § 3).
The equation (4.23) (for the function Cn(s)) studied in 4.2.1 belongs to the class

of hypergeometric equations (a second-order Fuchsian equation with three singular
points ([7], Chap. 2, § 6). The construction in 4.2.1 of a closed solution of the
form (4.18) for the parabolic equation (4.17) is contingent on the consideration of
functions studied in detail in the theory of special functions, namely, the integral
relation between hypergeometric functions ([101], Chap. 7) and the Gegenbauer
addition theorem were applied.
In the case of (4.41), for special functions of the Heun class there are no known

integral relations generalizing those for hypergeometric functions; no addition the-
orems have been obtained for Heun functions (see the survey in [112]). It is unclear
how to sum the series (4.40) and how to construct a closed solution of the equa-
tion (4.39). The desired integral representation for Fi(t; s) contains elliptic func-
tions.

The Green function. Let us discuss the integral representations of solutions found
in Theorems 4.1 and 4.2 from the point of view of the general theory of partial
differential equations. Suppose that by using the method of Green functions for
equations of parabolic type ([2], Chap. 6, § 3.2) we have constructed a solution of
the problem (4.39),

Fi(t; s) =

∫ ∞
−∞
G(t; ξ, s) ξi dξ, (4.42)
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where

G(t; ξ, s) =
∞∑
n=0

Cn(ξ)Cn(s)

‖Cn‖2
e−λnt (4.43)

is the Green function; the norm ‖Cn‖ is taken in the corresponding function space
([2], [120]).

In the proofs of Theorems 4.1 and 4.2 we solved the problem of summing the
series (4.43), and a non-closed representation of the Green function was reduced to
a closed integral expression. After substituting the integral thus obtained in (4.42)
and making the change of variable ξ = ϕ(x̄; s), the formula (4.42) becomes

Fi(t; s) =

∫
· · ·
∫
T̃

G̃(t; x̄)ϕi(x̄; s) dx̄. (4.44)

Here a change of variable is possible for which the function ϕ in the represen-
tation (4.44) is linear or linear-fractional with respect to the variable s, and the
multiple integral is an expectation (a probabilistic interpretation of the formula
(4.44) is given in §§ 5.3, 5.4). Thus, the closed solutions found in Theorems 4.1
and 4.2 are special cases of the formula (4.42). We also note that closed expres-
sions for the Green functions are known for parabolic equations with constant
coefficients [2].

4.3.1. Open problems. Below we present Kolmogorov linear equations for some
cases in which the methods of Chapter 4 can be used to prove an integral represen-
tation of the solution and to derive a non-linear equation similar to the equations
(4.35) and (4.38). The problems are as follows.

1. Obtain the third equation for a Markov death process on the state space N
for which the first and second equations for the double generating functions have
the form [62] (with λ � 0 and µ � 0)

∂F

∂t
= λz2

(
p0F + p1

∂F

∂z
− ∂

2F

∂z2

)
+ µz

(
F − ∂F

∂z

)
,

∂F

∂t
= λ(p0 + p1s− s2)

∂2F

∂s2
+ µ(1− s)∂F

∂s
, F(0; z; s) = ezs.

2. Obtain the third equation for a process with immigration of particles of
class B2 for which the Kolmogorov equations are

∂F

∂t
= λz2

(
F − ∂

2F

∂z2

)
+ µ

(
∂2F

∂z2
− F
)
,

∂F

∂t
= λ(1− s2)∂

2F

∂s2
+ µ(s2 − 1)F, F(0; z; s) = ezs.

Consider the interaction schemes 2T1 → k1T1 for k1 = 0, 1 and 0 → k0T1 for
k0 = 1, 2.
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3. Obtain the third equation for a process with particles of final type such that
the equation for the double generating function is of the form [60] (for λ > 0)

∂F

∂t
= λz21

(
h0

(
∂

∂z2

)
+
∂

∂z1
h1

(
∂

∂z2

)
+
∂2

∂z21
h2

(
∂

∂z2

)
− ∂

2

∂z21

)
F,

∂F

∂t
= λ(h0(s2) + s1h1(s2) + s

2
1h2(s2)− s21)

∂2F

∂s21
, F(0; z; s) = ezs.

Consider a more general scheme 2T1 → γ1T1 + γ2T2, γ1 = 0, 1, 2, 3.
4. Obtain the third equation for a process in 2.2.2 with interaction of particles

of different types, T1 + T2 → T3; the corresponding linear equations are
∂F

∂t
= λz1z2

(
∂F

∂z3
− ∂2F

∂z1∂z2

)
,
∂F

∂t
= λ(s3 − s1s2)

∂2F

∂s1∂s2
, F(0; z; s) = ezs.

5. The first and the second equations for the double generating function of
transition probabilities for a simple death process of polynomial type are as follows
(for k = 3, 4, . . .):

∂F

∂t
= λzk

(
∂k−1F

∂zk−1
− ∂

kF

∂zk

)
,
∂F

∂t
= λ(sk−1 − sk)∂

kF

∂sk
, F(0; z; s) = ezs.

Find the third equation. Obtain the third equation for an arbitrary simple death
process of class B2.
Obtain the third equation for a pure birth process of class B2.

CHAPTER V

THE IDENTITY PRINCIPLE FOR PARTICLES
AND INDEPENDENCE CONDITIONS

The definition and the equations of Markov processes with interaction are con-
nected with the conditions of non-equilibrium statistical physics. In § 5.1 it is shown
that the first Kolmogorov system of differential equations for a process in M1 is a
chain of equations for α-particle distribution functions {Pαβ(t), β ∈ Nn}. In § 5.2 we
discuss the applicability of the identity principle for particles and the de Finetti–
Khinchin symmetry theorem to the derivation of the kinetic equation for the one-
particle distribution function, and we analyze the conditions under which the
mathematical description of non-equilibrium states of physical systems of interacting
particles can be reduced to the consideration of the kinetic equation. In § 5.3 we take
a model of a bimolecular reaction in the form of a Markov process for a stochastic
system of interacting particles. The state space of particle trajectories correspond-
ing to a stochastic process with interaction is considered, and the kinetic equation is
obtained by transforming the state space of particle trajectories to a set of forests.

§ 5.1. The Bogolyubov chain of equations
for a Markov system of interacting particles

In the study of systems of interacting particles in non-equilibrium statistical
physics, one uses i-particle distribution functions Fi(t; x1, . . . , xi) that describe
the arrangement of i particles of the same type in the state space (−∞,∞) at
a time t ∈ [0,∞). Under general assumptions, a chain of equations was obtained
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in [13] for such distribution functions,

∂Fi

∂t
= Φi(x1, . . . , xi;Fi) + Φ̃i+1(x1, . . . , xi+1;Fi+1), i = 1, 2, . . . , (5.1)

where Φi(x1, . . . , xi;Fi) and Φ̃i+1(x1, . . . , xi+1;Fi+1) are certain interrelated func-
tionals. In [13] it is indicated that the one-particle distribution function is of
primary interest. It is assumed that this function F1(t, x1) satisfies a kinetic
equation of the form

∂F1
∂t
= A(x1;F1), (5.2)

where A(x1;F1) is some functional. For a known function F1(t; x1) one can find
expressions for the i-particle distribution functions Fi(t; x1, . . . , xi) with the help
of the chain of equations (5.1).
A vast literature is devoted to systems of equations of the form (5.1) and to

kinetic equations of the form (5.2) (see [96], [86], [87], and elsewhere). Other
approaches are also used in the study of systems of interacting particles, for instance,
equations for two-particle distribution functions are used [91]. The Markov prop-
erty is often introduced when describing systems with interaction with the help of
distribution functions.

Markov processes with interaction. Let a process with interaction on the state
space Nn be given by ε1, {p1γ}, {ϕ1α}, . . . , εl, {plγ}, {ϕlα}. The transition probabilities
{Pαβ(t), β ∈ Nn} determine the α-particle distribution function. The multivariate
generating function Fα(t; s) of the transition probabilities is a convolution of the
α-particle distribution function. Let the conditions of § 1.1.1 hold.
Proposition 5.1. The first system of Kolmogorov differential equations for the
transition probabilities of a Markov process in M1 can be represented in the form
of the following chain of equations:

∂Fα(t; s)

∂t
=

l∑
i=1

ϕiα

(
−Fα(t; s) +

∑
γ

piγFα−εi+γ(t; s)

)
, α ∈ Nn. (5.3)

Proof. Let us use the definition of generating function in (1.10), the system of
equations (1.2), and the definition (1.8) of the infinitesimal characteristics of a
Markov processes with interaction:

∂Fα(t; s)

∂t
=
∑
β

dPαβ(t)

dt
sβ =

∑
β

(∑
γ

aαγPγβ(t)

)
sβ

=
∑
β

( l∑
i=1

∑
γ−α+εi�0

ϕiαp
i
γ−α+εiPγβ(t)−

l∑
i=1

ϕiαPαβ(t)

)
sβ

=
l∑
i=1

ϕiα

( ∑
γ−α+εi�0

piγ−α+εi
∑
β

Pγβ(t)s
β −
∑
β

Pαβ(t)s
β

)

=
l∑
i=1

ϕiα

(∑
γ

piγFα−εi+γ(t; s)− Fα(t; s)
)
.

This proves Proposition 5.1.
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If the chain of equations (5.3) holds for a Markov process, then one can pose
the problem of deriving an equation of the form (5.2) for this Markov process. For
processes of class B1 ⊂M1 the system of non-linear equations (1.22) for one-particle
generating functions is of the form (5.2).

§ 5.2. The de Finetti–Khinchin symmetry
theorem and the kinetic equation

Definition 5.2. Random variables ξ1, ξ2, . . . , ξi are said to be symmetrically depen-
dent (permutable) if all i! permutations of the sequence (ξ1, ξ2, . . . , ξi) have identical
joint distributions, that is,

P{ξ1 � x1, ξ2 � x2, . . . , ξi � xi} = P{ξj1 � x1, ξj2 � x2, . . . , ξji � xi}

for all i! permutations

(
1, 2, . . . , i
j1, j2, . . . , ji

)
and for any x1, x2, . . . , xi.

We say that variables ξ1, ξ2, . . . , ξi, . . . form an infinite sequence of symmetrically
dependent random variables if ξ1, ξ2, . . . , ξi are symmetrically dependent random
variables for all i = 2, 3, . . . .

Theorem 5.3 (B. de Finetti and A.Ya. Khinchin ([66], [117], [83])). Let (Ω,A,P)
be a probability space, and let ξ1(ω), ξ2(ω), . . . , ξi(ω), . . . be an infinite sequence of
symmetrically dependent random variables. Let

F (x1, x2, . . . , xi) = P{ξ1 � x1, ξ2 � x2, . . . , ξi � xi}.

Then there is a random variable θ(ω) such that if

P{ξ1 � x | θ = y} = ϕ(x | y), P{θ � x} = H(x),

then

F (x1, x2, . . . , xi) =

∫ ∞
−∞
ϕ(x1 | y)ϕ(x2 | y) · · ·ϕ(xi | y) dH(y), i = 1, 2, . . . .

(5.4)

The integral (5.4) can be represented as the expectation [117]

P{ξ1 � x1, ξ2 � x2, . . . , ξi � xi}=E
(
P{ξ1 � x1 |θ}P{ξ2 � x2 |θ} · · ·P{ξi � xi |θ}

)
.

Thus, the permutability property for an infinite sequence of symmetrically depen-
dent random variables is equivalent to the property of conditional independence and
conditional identical distribution. The proof of Theorem 5.3 gives no way to con-
struct the relation (5.4). In general, the joint distribution function F (x1, x2, . . . , xi)
of a finite sequence of random variables ξ1, ξ2, . . . , ξi cannot be represented in the
form (5.4).
The i-particle distribution functions Fi(t; x1, x2, . . . , xi) considered in § 5.1 are

symmetric functions of the variables x1, x2, . . . , xi ([13], Chap. 2, § 6) because
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microparticles of the same type are indistinguishable [36]. As applied to the i-
particle functions, the integral representation (5.4) becomes

Fi(t; x1, x2, . . . , xi) =

∫ ∞
−∞
ϕ(x1 | y)ϕ(x2 | y) · · ·ϕ(xi | y) dH(t; y), i = 1, 2, . . . ,

(5.5)
and the problem of deriving the kinetic equation reduces to the search for an aver-
aging measure H(t; y) and to the derivation of an equation for the one-particle
conditional distribution function ϕ(x | y) [49].
Independence conditions. The symmetry theorem can be applied to systems of

interacting particles only if the definition of these systems is rigorous from the view-
point of the theory of stochastic processes, that is, the probability space (Ω,A,P)
must be defined. In physical kinetics there are some equations that are used but not
rigorously defined [79]. The equation of a diffusion process [69] and the equation
of a branching process ([71], [106]) were the first kinetic equations studied in the
theory of Markov processes. Both diffusion and branching processes correspond to
a degeneration of the formula (5.5) for which the averaging measure is concentrated
at a single point,

Fi(t; x1, x2, . . . , xi) = F1(t; x1)F1(t; x2) · · ·F1(t; xi), i = 1, 2, . . . ,

that is, the evolutions of individual particles in these processes are independent
of one another. For a Markov branching process the system of differential equa-
tions (1.22) was obtained for one-particle generating functions in [71] on the basis
of the assumption (1.21) that the evolutions of particles are independent.
In the mathematical description of physical processes one makes definite assump-

tions on the character of interaction (dependence) between the particles. In the
probabilistic description of such processes, the main assumptions have to do with
the mutual independence of various events. “In a sense, the notion of independence
〈. . .〉 occupies the central place in probability theory. 〈. . .〉 Accordingly, one of the
main problems of the philosophy of science 〈. . .〉 is the clarification and refinement of
premises under which given actual phenomena can be treated as independent” [70].
The following independence conditions are used in statistical physics when describ-
ing systems of interacting particles: the Markov property, the condition that the
correlation between the positions of microparticles weakens as the distance between
them increases, that is,

Fi(t; x1, x2, . . . , xi)− F1(t; x1)F1(t; x2) · · ·F1(t; xi)→ 0

as all distances tend to infinity, |xk−xl| → ∞ ([13], Chap. 1, § 1), and the indepen-
dent process of collision acts of microparticles in a rarefied gas. The last condition
is used in the Boltzmann kinetic equation ([79], [102]).
The set M1 of Markov processes with interaction (defined in § 1.3) can be dis-

tinguished in the set M of all Markov processes by the following independence
condition: the result of interaction of a complex Sεi , ε

i ∈ A, of particles is inde-
pendent of the presence of the other particles. As applied to processes with discrete
states, this condition was introduced in [79] for bimolecular processes with |εi| = 2
for εi ∈ A, and in [104] for branching processes with interaction.
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We assume that for Markov processes with interaction the α-particle distribution
functions {Pαβ(t), β ∈ Nn} have symmetry properties, because in the definition of
these processes we introduced the identity condition for all particles of the same
type.

§ 5.3. Transformation of the state space of particle
trajectories for a system with interaction to a set of trees

Let us consider a process with interaction of class B2 with the scheme 2T →
kT , namely, a homogeneous Markov process ξt, t ∈ [0,∞), on the state space N
determined by ε = 2, {pk, k ∈ N; p2 = 0}, {ϕi = i(i − 1)λ, i ∈ N, λ > 0}. The
first system of Kolmogorov differential equations can be represented in the form of
a chain of equations

∂Fi(t; s)

∂t
= −i(i− 1)λFi(t; s) + i(i− 1)λ

∞∑
k=0

pkFi−2+k(t; s), i = 0, 1, . . .;

the generating function Fi(t; s) is a convolution of the distribution {Pij(t), j ∈ N}.
We interpret a state i of the process ξt as the presence of i particles of type T

in some physical system. In a random time τi with P{τi � t} = 1− e−i(i−1)λt an
interaction of some pair among i particles of the system occurs. This complex of
two particles is transformed into an aggregate of k particles (descendants) of type T
with the probability distribution {pk}, corresponding to the passage of the Markov
process ξt from the state i to the state i−2+k; the further evolution is similar. To
describe this system of interacting particles mathematically, we can construct the
space of elementary events that consists of a description of the evolution of each
individual particle that ever existed in the system (the space of particle trajectories)
and the corresponding probability measure (a measure on the particle trajectories).
We denote this probability space by (Ωtr,Atr,Ptr). In Fig. 4 we show an example
of a realization of a process with interaction of particles in the state space Ωtr.

Figure 4. Realization of a stochastic
process with interaction of particles

Figure 5. Transformation of the state
space to a set of trees

Let us transform the state space of particle trajectories to a set of trees as follows:
we assign the descendants of any pair of interacting particles to one of the particles
in this pair. Then for each of the i initial particles we obtain randomly many

descendants ξ
(l)
t (l = 1, . . . , i; see Fig. 5), and the following relation holds:

ξt = ξ
(1)
t + · · ·+ ξ

(i)
t . (5.6)
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Since the particles are indistinguishable, we can assume that the random variables

ξ
(l)
t are permutable (symmetrically dependent). The equality (5.6) enables us to
specify more precisely the assumption about the conditional independence and con-
ditional identical distribution:

Fi(t; s) =
∞∑
j=0

Pij(t)s
j = E(sξt | ξ0 = i) = Esξ

(1)
t +···+ξ

(i)
t = E

(
E(sξ

(1)
t +···+ξ

(i)
t | θt)

)
= E
(
E(sξ

(1)
t | θt) · · ·E(sξ

(i)
t | θt)

)
= E
(
E(sξ

(1)
t | θt)

)i
=

∫
{ω∈Ωtr}

ϕi(ω; s)H(t; dω), (5.7)

where i ∈ N and θt is a random variable on (Ωtr,Atr,Ptr) whose existence follows
from Theorem 5.3. The form of the dependence of the function ϕ(ω; s) on the
variable s is related to the structure of the trajectories (see § 5.4), and the function
H(t; dω) determines a random medium [1] corresponding to the Markov process in
question. We note that the relation (5.6) coincides with the relation (4.10) for a
Markov process of class B1, and the integral representation (5.7) for the i-particle
generating function generalizes the branching property (4.6) [15] for a process with
independent particles.
A transformation of the state space of trajectories to a set of forests is possible

if the equation (5.6) holds for an arbitrary system of interacting particles. In the
case of continuous phase space the generating functionals [13], [106] are used to
derive an integral representation of the form (5.7) for the i-particle distribution
functions. The identity principle for particles [36] and symmetry properties are the
most general aspects of importance in non-equilibrium statistical physics.

Kinetic equations. Finding an integral representation of the form (5.7) by proba-
bilistic methods is difficult, because the trajectory space (Ωtr,Atr,Ptr) is compli-
cated. The generalized branching property (5.7) for the generating function Fi(t; s)
of a Markov process ξt with pair interactions was revealed by analytic methods in
Chapter 4, where closed solutions of the second Kolmogorov equation were con-
structed. In § 4.2.2 we found the averaging measure and the kinetic equation (4.35)
for the one-particle generating function ϕ(x, y; s) of the conditional transition prob-
abilities for the bimolecular reaction 2T → kT , k = 0, 1. In § 4.2.3 we gave a similar
non-linear first-order equation (4.38) for the function ϕ(x, y; s) for the interaction
scheme 2T → 3T . In accordance with Theorem 5.3, the multiple integral in the
formulae (4.34) and (4.36) is treated as an expectation.
The problem of deriving the kinetic (third) equation for Markov processes with

interaction can be solved by constructing exact solutions in the form of an integral
representation (5.7) for the linear Kolmogorov equations in special cases. The
examples of such solutions given in the present paper enable us to make conjectures
about the types of non-linear equations for diverse classes of Markov processes: for
B1 this is a system of ordinary differential equations, for B2 it is a first-order system
of partial differential equations, for B3 it is a system of integral equations of renewal
type (for renewal equations, see [106], Chap. 8, § 7), and for the setM1 it is a system
of stochastic integral equations.
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§ 5.4. Branching property for a simple death process
The simplest Markov process in the set M1 is a death process ξt with t ∈ [0,∞)

(on the state space N) determined by ε = 1, {p0 = 1}, {ϕ0 = 0, ϕi > 0, i = 1, 2, . . .}.
The Kolmogorov equations for the double generating function of the transition
probabilities F(t; z; s) are of the form ((2.6) and (2.7))

∂F

∂t
= z(F −Dz(F)),

∂F

∂t
= (1− s)Ds(F), F(0; z; s) = e(zs). (5.8)

The process ξt stays at the initial state i during a random time τi with distribution
P{τi � t} = 1 − e−ϕit. At the time τi the process passes to the state i− 1, and so
on. An example of a realization of the stochastic process ξt is shown in Fig. 6.

Figure 6. Death process for the state
space N

Figure 7. Death process for the state
space Ωtr

We interpret a state i of the process as the presence of i particles of the same type,
and a transition of the process to the state i−1 is the death of one of the particles;
we have the scheme T → 0. An example of a realization of the death process on
the state space Ωtr of particle trajectories is shown in Fig. 7. The random variables

ξ
(l)
t (the numbers of descendants for each of the initial particles, l = 1, . . . , i) take
the values 0 and 1. Assuming that the random variables in the sum (5.6) are
permutable, we see for an infinite sequence of symmetrically dependent random
variables taking only the values 0 and 1 (cf. [26], vol. 2, Chap. 7, § 4) that

Fi(t; s) = E(Xt + sYt)
i, i ∈ N, (5.9)

where Xt and Yt are some interacting stochastic processes.

Theorem 5.4. Let a Markov death process satisfy the conditions ϕi+1 > ϕi, i ∈ N,
and let limi→∞ ϕi =∞. The double generating function of the transition probabil-
ities can be represented by the Fourier series

F(t; z; s) =
∞∑
n=0

1

ϕ1 · · ·ϕn
C̃n(z)Cn(s)e

−ϕnt, (5.10)

where

C̃n(z) = z
n +

∞∑
k=1

zn+k

(ϕn+1 − ϕn) · · · (ϕn+k − ϕn)
,

Cn(s) = s
n +

n−1∑
k=0

ϕk+1 · · ·ϕn
(ϕk − ϕn) · · · (ϕn−1 − ϕn)

sk.
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The series (5.10) is absolutely convergent for any z, any s with |s| < 1, and any
t ∈ [0,∞).
Proof. Let us use the definition of double generating function (2.5) and the explicit
expressions (2.8) for the transition probabilities Pij(t) of the death process:

F(t; z; s) =
∞∑
i=0

∞∑
j=0

zi

ϕ1 · · ·ϕi
Pij(t)s

j

=
∞∑
i=0

i∑
j=0

i∑
n=j

zi

ϕ1 · · ·ϕj
e−ϕnt

(ϕi − ϕn) · · · (ϕn+1 − ϕn)(ϕn−1 − ϕn) · · · (ϕj − ϕn)
sj

=
∞∑
n=0

e−ϕnt

ϕ1 · · ·ϕn

(
zn +

∞∑
i=n+1

zi

(ϕn+1 − ϕn) · · · (ϕi − ϕn)

)

×
(
sn +

n−1∑
j=0

ϕj+1 · · ·ϕn
(ϕj − ϕn) · · · (ϕn−1 − ϕn)

sj
)
.

The convergence of the series for F(t; z; s) follows from the estimate∣∣∣∣
∞∑
i=0

∞∑
j=0

zi

ϕ1 · · ·ϕi
Pij(t)s

j

∣∣∣∣ �
∞∑
i=0

∞∑
j=0

|z|i
ϕ1 · · ·ϕi

|s|j � 1

1− |s|

∞∑
i=0

|z|i
ϕ1 · · ·ϕi

<∞,

for any z and any s with |s| < 1. This proves Theorem 5.4.
For a death process of linear type in which ϕi = iλ, the series (5.10) can readily

be summed and leads to the branching property (4.12),

F(t; z; s) =
∞∑
n=0

(z/λ)n

n!
ez/λ(s− 1)n e−nλt = e(z/λ)(1+(s−1)e−λt).

The sum of the series (5.10) was found in § 4.2.1 for a process of quadratic type
such that ϕi = i(i− 1)λ. Thus, the problem of justifying the probabilistic assump-
tion that the generalized branching property (5.9) holds for the Markov death
process reduces to the analytic problem of summing the series (5.10) under some
assumptions about the function ϕi = ϕ(i), i ∈ N.
We note that the solution (5.10) of the equations (5.8) containing the Gel’fond–

Leont’ev generalized differentiation operator has the form of a series of exponential
functions [78]. For t = 0 we obtain an expansion of the eigenfunction (2.2):

e(zs) =
∞∑
n=0

(ϕ1 · · ·ϕn)−1C̃n(z)Cn(s),

where the functions C̃n(z) and Cn(s) are related by an integral transform.
A pure birth process also belongs to the set M1. As in the previous case, for

the state space Ωtr we can conjecture that the integral representation (5.7) of the
i-particle generating function of the transition probabilities for this process has
the form [53]

Fi(t; s) = E

(
sYt
1− sXt

)i
, i ∈ N,

where Xt and Yt are interconnected stochastic processes.
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Theorem 5.5. For a birth process of Poisson type the branching property holds in
the following form (for ω2 = −1, i = 2, 3, . . .):

Fi(t; s) =

∫ 1
0

(
1

2πω

∮
0+

[∫ ∞
0

[
ϕi(x, η, u; s)

1 + η

1− x

]′
η

dη

]′
x

eλt(ux−1)

u
du

)
dx,

where ϕ is a linear-fractional function with respect to the variable s, namely,

ϕ(x, η, u; s) =
s(1− x)/(1 + η)

1− s(1/u+ η(1− x)/(1 + η)) .

Theorem 5.5 can be proved by a straightforward evaluation of the triple integral,
which leads to the following expressions for the transition probabilities of the Pois-
son process: Pij(t) = 0 for 0 � j < i and Pij(t) = e−λt(λt)j−i/(j− i)! for j � i � 1.
The computation involves the Euler beta function ([44], [52]).

5.4.1. Open problems. The conjecture about the non-linear property (5.7) for
Markov processes must be verified first of all for the cases in which the explicit
expressions for the transition probabilities Pαβ(t), α, β ∈ Nn, are either known or
can be found for (at least) some values of α and β. The problems are as follows.
1. Discover the non-linear property of the transition probabilities (5.9) for a

death process of power-law type for which ϕi = i
ρλ, 0 < ρ < 1 (for λ > 0).

2. The second Kolmogorov equation for the generating function of the transition
probabilities of a two-dimensional death process ([76], [77]) of quadratic type is of
the form

∂Fα(t; s)

∂t
= λ(p10s1 + p01s2 − s1s2)

∂2Fα(t; s)

∂s1∂s2
, Fα(0; s) = s

α.

Obtain the generalized branching property

F(α1,α2)(t; s1, s2) = E(Xt + s1Yt)
α1(Zt + s2Ut)

α2 , (α1, α2) ∈ N2,

where Xt, Yt, Zt, Ut are interconnected stochastic processes. Obtain the property

F(α1,α2)(t; s1, s2) = E

(
s1Yt

1− s1Xt

)α1( s2Ut

1− s2Zt

)α2
, (α1, α2) ∈ N2,

for a two-dimensional birth process for which the second equation is

∂Fα(t; s)

∂t
= λ(p21s

2
1s2 + p12s1s

2
2 − s1s2)

∂2Fα(t; s)

∂s1∂s2
, Fα(0; s) = s

α.

3. For a Markov birth-and-death process of Poisson type, obtain an integral
representation for the i-particle generating function

Fi(t; s) = E

(
Xt + sYt
Zt + sUt

)i
, i ∈ N,

where Xt, Yt, Zt, Ut are some stochastic processes, by using the explicit expres-
sions (2.10) for the transition probabilities.
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