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Abstract. We consider the Kolmogorov equations for transition probabilities if a three-dimen-
sional Markov process is a special form. For a system of stationary first and second equations, an
exact solution is obtain using the Fourier method. We obtain asymptotics for the expectation and
variance of the final distribution and establish a limit theorem.
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1. Double epidemic process. On the set of states

N3 = {α = (α1, α2, α3), α1, α2, α3 = 0, 1, 2, . . . }

we consider a homogeneous (with respect to time) Markov process ξ(t) = (ξ1(t), ξ2(t),
ξ3(t)), t ∈ [0,∞), with transition probabilities P

(α1,α2,α3)
(β1,β2,β3)

(t) = P{ξ(t) = (β1, β2, β3) |
ξ(0) = (α1, α2, α3)}. Suppose the transition probabilities have the following form as
Δt→ 0+:

P
(α1,α2,α3)
(α1,α2,α3−1)

(Δt) = (μ1α1α3 + μ2α2α3)Δt+ o(Δt),

P
(α1,α2,α3)
(α1−1,α2,α3)

(Δt) = ρ1α1Δt+ o(Δt), P
(α1,α2,α3)
(α1,α2−1,α3)

(Δt) = ρ2α2Δt+ o(Δt),

P
(α1,α2,α3)
(α1,α2,α3)

(Δt) = 1− (μ1α1α3 + μ2α2α3 + ρ1α1 + ρ2α2)Δt+ o(Δt),

where μ1 > 0, μ2 > 0, ρ1 > 0, ρ2 > 0.
The Markov process ξ(t) can be interpreted as a model for a spread of two differ-

ent epidemics through the population. The state of the process (α1, α2, α3) means the
presence of α1 particles of type T1 (the carriers of infection), α2 particles of type T2
(the carriers of another infection), and α3 particles of type T3 (the susceptible indi-
viduals). At a random time τ1α, P{τ

1
α < t} = 1 − e

−α1α3μ1t, a pair of particles of
types T1 and T3 interacts and is transformed into a particle of type T1. The process
passes to the state (α1, α2, α3− 1). At a random time τ2α, P{τ

2
α < t} = 1− e

−α2α3μ2t,
a pair of particles of types T2 and T3 interacts and is transformed into a particle of
type T2. The process passes to the state (α1, α2, α3 − 1). Besides, at a random time
τ3α, P{τ

3
α < t} = 1− e

−α1ρ1t, a particle of type T1 dies and the process passes to the
state (α1 − 1, α2, α3); at a random time τ4α, P{τ

4
α < t} = 1 − e

−α2ρ2t, a particle of
type T2 dies and the process passes to the state (α1, α2 − 1, α3). The random vari-
ables τ1α, τ

2
α, τ

3
α, τ

4
α are independent and the process is in the state (α1, α2, α3) during

random time τα = min{τ1α, τ
2
α, τ

3
α, τ

4
α}. We point out the absence of an interactions

between particles of types T1 and T2.
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In the stochastic theory of epidemics the general stochastic epidemic (i.e., Bartlett–
Mac-Kendric epidemic process [1]) and the simple stochastic epidemic (i.e., Weiss epi-
demic process [2]) are the basic models; both are considered on the set of states N2.
In the Bartlett–Mac-Kendric epidemic process an interacting pair of infected and sus-
ceptible particles is transformed into a pair of two infected particles (or two carriers).
This process is rather complicated; some results were obtained by asymptotic methods
(see [4], [5], etc.)

In the Weiss epidemic process an interacting pair of infected and susceptible
particles is transformed into one carrier, i.e., one infected individual is removed from
the population. This Markov process is more accesible to study; there are many
generalizations of the Weiss model on the case of Nn. For instance, Gany introduced
a carrier borne epidemic process with two stages of infection [13] on N3 which is
interpreted as a process in the spread of AIDS. In the present paper we consider
the Markov process ξ(t) which was introduced by Becker (see [3]) for ρ1 = ρ2 as a
generalization of the Weiss epidemic process. In this double epidemic model ξ(t) we
assume that the population is under control, but carriers cannot be found according
to the interpretation of particles of types T1, T2, T3 given above.

2. The problem of final probabilities. For the process ξ(t) we define final
probabilities for absorbing states (0, 0, γ3), γ3 = 0, 1, 2, . . . (i.e., all carriers of both
types were removed)

(1) q
(α1,α2,α3)
(0,0,γ3)

= lim
t→∞

P
(α1,α2,α3)
(0,0,γ3)

(t), (α1, α2, α3) ∈ N
3;

∞∑

γ3=0

q
(α1,α2,α3)
(0,0,γ3)

= 1.

The problem of determining the final probability distributions for a Markov pro-
cess on N2 was solved in [6] for a special case of a branching process, where the
transition probabilities are nonlinearly related and the equation of the one-particle
generation function is known [7]. The process ξ(t) is a particular case of the class
of Markov processes on Nn defined by Sevast’yanov in [8]. Calculation of the final
distribution for the Markov process of this class [8] can be reduced to the solution
of the stationary first (linear) Kolmogorov equation for the exponentional generating
function of the transition probabilities (see [10, Chap. 3] and [9]).

Many papers are devoted to exact solutions for equations of Markov epidemic
processes and to methods of their derivation (see [1], [2], [3], [4], etc). In the present
paper, for the system consisting of the first and second Kolmogorov equations, we
obtain the solution in the form of Fourier series. This solution for the exponentional
(double) generating function for the transition probabilities is summed up to an inte-
gral form [10], [11], [12] in Theorem 1. In Theorem 2, the obtained generating function
of the final probabilities is of integral form which can easily be used for establsing the
limit theorem.

The asymptotic properties of the final distribution (1) are considered as α3 →∞,
because we are interested in the case where, for t = 0, the number of infected indi-
viduals is small and that of noninfected ones is large. The limit of Theorem 3 belongs
to theorems of “threshold” type (see [4], [13]), which are applied to determine the
threshold number of infected individuals; exceeding this number means the beginning
of an epidemic.

3. Integral representation of the solution of the Kolmogorov system
of equations. We introduce the exponential (double) generation function (|s1| 6



FINAL PROBABILITIES FOR BECKER PROCESS 3

1, |s2| 6 1, |s3| 6 1)

F(t; z1, z2, z3; s1, s2, s3) =
∞∑

α1,α2,α3,β1,β2β3=0

zα11 z
α2
2 z

α3
3

α1!α2!α3!
P
(α1,α2,α3)
(β1,β2,β3)

(t)sβ11 s
β2
2 s
β3
3 .

For the considered process we can write the first (direct) and the second (in-
verse) systems of Kolmogorov differential equations for the transition probabilities
P
(α1,α2,α3)
(β1,β2,β3)

(t) in the form of two equations in partial derivatives of second order
(see [8], [10])

∂F
∂t
= μ1z1z3

(
∂F
∂z1
−
∂2F
∂z1∂z3

)

+ μ2z2z3

(
∂F
∂z2
−
∂2F
∂z2∂z3

)

+ ρ1z1

(

F −
∂F
∂z1

)

+ ρ2z2

(

F −
∂F
∂z2

)

;(2)

∂F
∂t
= μ1(s1 − s1s3)

∂2F
∂s1∂s3

+ μ2(s2 − s2s3)
∂2F
∂s2∂s3

+ ρ1(1− s1)
∂F
∂s1
+ ρ2(1− s2)

∂F
∂s2
,(3)

with the initial condition F(0; z1, z2, z3; s1, s2, s3) = ez1s1+z2s2+z3s3 .
Using the Fourier variables separation method (see [11], [12]) for the system of

linear equations (2), (3) we obtain the solution

F(t; z1, z2, z3; s1, s2, s3) =
∞∑

α1,α2,α3=0

zα11 z
α2
2 z

α3
3

α1!α2!α3!
ez1ρ1/(μ1α3+ρ1)+z2ρ2/(μ2α3+ρ2)+z3

×

(

s1 −
ρ1

μ1α3 + ρ1

)α1(

s2 −
ρ2

μ2α3 + ρ2

)α2

× (s3 − 1)
α3 e−(μ1α1α3+μ2α2α3+ρ1α1+ρ2α2)t.(4)

Absolute convergence of the series (4) for all z1, z2, z3, s1, s2, s3 and t ∈ [0,∞) is
obvious. Furthermore, we need the function (x > 0, y > 0)

H(x, y) =

∫ ∞

0

∫ ∞

0

J0(2
√
ux)J0(2

√
vy) 0F2(1, 1;−uv) dudv,

where J0(z) =
∑∞
k=0 (−1)

k(z/2)2k/(k!k!) is the Bessel function of order zero, and
0F2(1, 1; z) =

∑∞
k=0 z

k/(k!)3 is a hypergeometric function.
Theorem 1. For the Markov process ξ(t), the double generating function is as

follows:

F(t; z1, z2, z3; s1, s2, s3) =
∫ ∞

0

∫ ∞

0

ez1s1e
−(μ1x+ρ1)t+z2s2e

−(μ2x+ρ2)t+z3

×

{

ez3(s3−1)e
−y

+

2∑

i=1

∫ ∞

0

e−u+z3(s3−1)e
−y−

μi
ρi
u
√
zi

u
(1− e−(μix+ρi)t)

× I1
(
2
√
ziu(1− e−(μix+ρi)t)

)
du

+

∫ ∞

0

∫ ∞

0

e−u−v+z3(s3−1)e
−y−

μ1
ρ1
u−

μ2
ρ2
v
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×

√
z1z2

uv
(1− e−(μ1x+ρ1)t)(1− e−(μ2x+ρ2)t)

× I1
(
2
√
z1u(1− e−(μ1x+ρ1)t)

)

× I1
(
2
√
z2v(1− e−(μ2x+ρ2)t)

)
du dv

}

H(x, y) dx dy,(5)

where I1(z) is the modified Bessel function.
Proof. To obtain the solution (5) of the system (2), (3) we use the following rep-

resentation of an exponent (see [14, vol. 2, relation (3.5); vol. 1, Chap. 2, section 12]):

(6) e−(α1μ1+α2μ2)α3t =

∫ ∞

0

∫ ∞

0

e−(α1μ1+α2μ2)tx−α3yH(x, y) dx dy.

After substitution of (6) into (4) and changing the order of summation (its validity
is implyed by absolute convergence) we get

F(t; z1, z2, z3; s1, s2, s3) =
∞∑

α1,α2,α3=0

zα11 z
α2
2 z

α3
3

α1!α2!α3!
ez1ρ1/(μ1α3+ρ1)+z2ρ2/(μ2α3+ρ2)+z3

×

(

s1 −
ρ1

μ1α3 + ρ1

)α1(

s2 −
ρ2

μ2α3 + ρ2

)α2
(s3 − 1)

α3 e−(α1ρ1+α2ρ2)t

×
∫ ∞

0

∫ ∞

0

e−(α1μ1+α2μ2)tx−α3yH(x, y) dx dy

=

∫ ∞

0

∫ ∞

0

ez3
{ ∞∑

α3=0

zα33
α3!
ez1ρ1/(α3μ1+ρ1)+z2ρ2/(α3μ2+ρ2)

× (s3 − 1)
α3 e−α3y

{ ∞∑

α1=0

zα11
α1!

[(

s1 −
ρ1

μ1α3 + ρ1

)

e−(μ1x+ρ1)t
]α1

×
∞∑

α2=0

zα22
α2!

[(

s2 −
ρ2

μ2α3 + ρ2

)

e−(μ2x+ρ2)t
]α2}}

H(x, y) dx dy

=

∫ ∞

0

∫ ∞

0

ez1s1e
−(μ1x+ρ1)t+z2s2e

−(μ2x+ρ2)t+z3

{ ∞∑

α3=0

[z3(s3 − 1)e−y]α3

α3!

× ez1ρ1(1−e
−(μ1x+ρ1)t)/(α3μ1+ρ1)+z2ρ2(1−e

−(μ2x+ρ2)t)/(α3μ2+ρ2)

}

×H(x, y) dx dy.(7)

For summation of the series in brackets we use the formula

∞∑

α=0

bα

α!(α+ μ)k
=

1

(k − 1)!

∫ ∞

0

uk−1e−μu+be
−u

du, k = 1, 2, . . . ,

∞∑

α=0

bα

α!(α+ μ)k(α+ ρ)l
=

1

(k − 1)!(l − 1)!

×
∫ ∞

0

∫ ∞

0

uk−1vl−1e−μu−ρv+be
−u−v

du dv,
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k, l = 1, 2, . . . , and the Bessel function

I1(z) =
∞∑

k=0

(z/2)2k+1

k!(k + 1)!

(substituting a1 = z1ρ1(1 − e−(μ1x+ρ1)t)/μ1, a2 = z2ρ2(1 − e−(μ2x+ρ2)t)/μ2, b =
z3(s3 − 1)e−y):

∞∑

α3=0

bα3

α3!
ea1/(α3+ρ1/μ1)+a2/(α3+ρ2/μ2)

=

∞∑

k,l=0

ak1a
l
2

k!l!

∞∑

α3=0

bα3

α3!(α3 + ρ1/μ1)k(α3 + ρ2/μ2)l

=

∞∑

α3=0

bα3

α3!
+

∞∑

k=1

ak1
k!

∞∑

α3=0

bα3

α3!(α3 + ρ1/μ1)k
+

∞∑

l=1

al2
l!

∞∑

α3=0

bα3

α3!(α3 + ρ2/μ2)l

+

∞∑

k,l=1

ak1a
l
2

k!l!

∞∑

α3=0

bα3

α3!(α3 + ρ1/μ1)k(α3 + ρ2/μ2)l

= eb +

2∑

i=1

∞∑

k=1

aki
k!(k − 1)!

∫ ∞

0

uk−1 e
− ρiμi

u+be−u
du

+
∞∑

k,l=1

ak1
k!(k − 1)!

al2
l!(l − 1)!

∫ ∞

0

∫ ∞

0

uk−1 vl−1 e
− ρ1μ1 u−

ρ2
μ2
v+be−u−v

du dv

= eb +

2∑

i=1

∫ ∞

0

√
ai

u
I1(2
√
aiu) e

− ρiμi
u+be−u

du

+

∫ ∞

0

∫ ∞

0

√
a1

u

√
a2

v
I1(2
√
a1u) I1(2

√
a2v) e

− ρ1μ1 u−
ρ2
μ2
v+be−u−v

du dv.(8)

Combining (8) and (7), we obtain (5) (with respect to u, v). This complets the proof
of Theorem 1.

By formula (5) we can now obtain expectation and variance for the random
processes ξ1(t), ξ2(t), ξ3(t) (see [12]).

4. Final probability distribution and limit theorem. For final probabili-
ties (1) we have generating functions (|s| 6 1)

Φ(α1,α2,α3)(s) =

∞∑

γ3=0

q
(α1,α2,α3)
(0,0,γ3)

sγ3 ;

Φ(z1, z2, z3; s) =
∞∑

α1,α2,α3=0

zα11 z
α2
2 z

α3
3

α1!α2!α3!
Φ(α1,α2,α3)(s),(9)

Passing to the limit Φ(z1, z2, z3; s) = limt→∞ F(t; z1, z2, z3; s1, s2, s) in (5) leads
to the representation

Φ(z1, z2, z3; s) =

∫ ∞

0

∫ ∞

0

ez3
{

ez3(s−1)e
−y

+

2∑

i=1

∫ ∞

0

e−u+z3(s−1) exp(−y−(μi/ρi)u)
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×

√
zi

u
I1(2
√
ziu) du

+

∫ ∞

0

∫ ∞

0

e−u−v+z3(s−1) exp(−y−(μ1/ρ1)u−(μ2/ρ2)v)

×

√
z1z2

uv
I1(2
√
z1u) I1(2

√
z2v) du dv

}

H(x, y) dx dy.

Expanding into power series with respect to z1, z2, z3, taking into account (9),
and evaluating the integrals, we see that the following theorem holds true.

Theorem 2. For the Markov process ξ(t), the generating function of final prob-
abilities (α1 > 0, α2 > 0) is as follows:

Φ(α1,α2,α3)(s) =
1

(α1 − 1)!(α2 − 1)!

∫ ∞

0

∫ ∞

0

uα1−1 vα2−1

× (1− e−(μ1/ρ1)u−(μ2/ρ2)v + se−(μ1/ρ1)u−(μ2/ρ2)v)α3 e−u−v du dv.(10)

Expanding (10) into power series with respect to s, we obtain the following state-
ment.

Corollary 1. Final probabilities for the Becker epidemic process are as follows:

q
(α1,α2,α3)
(0,0,γ3)

= Cγ3α3

α3−γ3∑

i=0

(−1)iCiα3−γ3

( ρ1

μ1i+ μ1γ3 + ρ1

)α1( ρ2

μ2i+ μ2γ3 + ρ2

)α2
.

In the particular case of ρ1 = ρ2 the formula for transition and final probabilities
was obtained in [3] by other methods.

In the special case under consideration, particles of type T3 are said to be fi-
nal [7]. Denote by η(α1,α2,α3) a random number of particles of type T3 which remains
after termination of the epidemic process, i.e., there are no longer any particles of
types T1 and T2. The random variable η(α1,α2,α3) has the probability distribution
{q(α1,α2,α3)(0,0,γ3)

, γ3 = 0, . . . , α3}, which is defined by the generating function (10). For
the expectation we obtain

E η(α1,α2,α3) = Φ′(α1,α2,α3)(1) = α3

(
ρ1

μ1 + ρ1

)α1 ( ρ2

μ2 + ρ2

)α2
.

The calculation of the variance

Dη(α1,α2,α3) = Φ′′(α1,α2,α3)(1) + Φ
′
(α1,α2,α3)

(1)− (Φ′(α1,α2,α3)(1))
2

leads to the asymptotic formula, as α3 →∞,

Dη(α1,α2,α3) ∼ α23

((
ρ1

2μ1 + ρ1

)α1( ρ2

2μ2 + ρ2

)α2
−

(
ρ1

μ1 + ρ1

)2α1( ρ2

μ2 + ρ2

)2α2)

.

Using the explicit expression (10) for the probability distribution on N , and
applying the characteristic functions method in the standard way [7], we obtain the
following statement.

Theorem 3. Assume x ∈ [0, 1]. Then (α1 > 0, α2 > 0)

F(α1,α2)(x) = lim
α3→∞

P

{
η(α1,α2,α3)

α3
6 x

}

= 1−
1

(α1 − 1)!(α2 − 1)!
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×
∫ −(ρ1/μ1) ln x

0

∫ −(ρ2/μ2) ln x−(μ1ρ2)/(ρ1μ2)u

0

uα1−1 vα2−1 e−u−v du dv.

In particular, for μ1ρ2 6= μ2ρ1 or μ1ρ2 = μ2ρ1, we have

F(1,1)(x) =
μ1ρ2x

ρ1/μ1 − μ2ρ1xρ2/μ2

μ1ρ2 − μ2ρ1
or F(1,1)(x) = x

ρ1/μ1

(

1−
ρ1

μ1
log x

)

.

accordingly.
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