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Abstract. A Markov continuous time branching process with two types of particles T1 and T2

is considered. Particles of the two types appear either as the offspring of a particle of type T1, or as
a result of interaction of two particles of type T1. Under certain restrictions on the distribution of
the number of new particles the asymptotic behavior of the expectation and variance of the number
of particles of the two types are investigated and the asymptotic normality of the distribution of the
number of final particles of type T2 is established when the initial number of particles of type T1 is
large.
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1. Branching process with two types of particles T1, T2 and two kinds
of interaction ε1 = (1, 0), ε2 = (2, 0) (see [5]). Let ξ(t), t ∈ [0,∞), be a time-
homogeneous Markov process with state space N2 = {(α1, α2), α1, α2 = 0, 1, 2, . . .}.
Assume that the transition probabilities P

(α1,α2)
(β1,β2) (t) = P(ξ(t) = (β1, β2) | ξ(0) =

(α1, α2)) have, as ∆t→ 0, the form (λ1 > 0, λ2 > 0):

P
(α1,α2)
(α1,α2) (∆t) = 1− (λ2α1(α1 − 1) + λ1α1) ∆t+ o(∆t),

P
(α1,α2)
(β1,β2) (∆t) = (λ2α1(α1 − 1) p2

β1−α1+2,β2−α2
+ λ1α1p

1
β1−α1+1,β2−α2

) ∆t+ o(∆t)

if α1 6= β1 or α2 6= β2. Here {plγ1γ2
= 0, γ1, γ2 ∈ N;

∑∞
γ1γ2=0 p

l
γ1γ2

= 1, pll0 = 0},
l = 1, 2, are given probability distributions. Introduce generating functions

G(β1,β2)(t; z1, z2) =

∞∑
α1,α2=0

zα1
1 zα2

2

α1!α2!
P

(α1,α2)
(β1,β2) (t),

F(α1,α2)(t; s1, s2) =
∞∑

β1,β2=0

P
(α1,α2)
(β1,β2) (t)sβ1

1 sβ2

2 ,

hl(s1, s2) =
∞∑

γ1,γ2=0

plγ1γ2
sγ1

1 s
γ2

2 , |s1| 5 1, |s2| 5 1,

and linear differential operators

hl

(
∂

∂z1
,

∂

∂z2

)
=

∞∑
γ1,γ2=0

plγ1γ2

∂γ1+γ2

∂zγ1

1 ∂zγ2

2

, l = 1, 2.
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The first (backward) Kolmogorov system of differential equations for the tran-
sition probabilities of the Markov process ξ(t) is equivalent to the following partial
differential equation (see [5, Theorem 2]):
(1)
∂G(β1,β2)

∂t
=

[
λ2z

2
1

(
h2

(
∂

∂z1
,

∂

∂z2

)
− ∂2

∂z2
1

)
+λ1z1

(
h1

(
∂

∂z1
,

∂

∂z2

)
− ∂

∂z1

)]
G(β1,β2)

with the initial condition G(β1,β2)(0; z1, z2) = zβ1

1 zβ2

2 /(β1!β2!).
The second (forward) Kolmogorov system of differential equations is equivalent

to the following partial differential equation (see [5, Theorem 1]):

∂F(α1,α2)

∂t
= λ2(h2(s1, s2)− s2

1)
∂2F(α1,α2)

∂s2
1

+ λ1(h1(s1, s2)− s1)
∂F(α1,α2)

∂s1

with the initial condition F(α1,α2)(0; s1, s2) = sα1
1 sα2

2 .
A state (α1, α2) is treated as existence of α1 particles of type T1 and α2 particles

of type T2 (see [1], [2], [5]). A particle of type T1 has a random life-length τ1
(α1,α2)

with P{τ1
(α1,α2) < t} = 1 − exp{−λ1α1t}, and, dying, produces, independently of

other particles, γ1 particles of type T1 and γ2 particles of type T2 with probability
distribution {p1

γ1γ2
}. Besides, any pair T1 +T1 of particles transforms after a random

time τ2
(α1,α2) with P{τ2

(α1,α2) < t} = 1−exp{−λ2α1(α1−1) t}, independently of other

particles, into a group of particles with probability distribution {p2
γ1γ2
}. It is assumed

that τ1
(α1,α2) and τ2

(α1,α2) are independent random variables. The process spends in

state (α1, α2) a random time τ(α1,α2) = min(τ1
(α1,α2), τ

2
(α1,α2)). Particles of type T2

are called final. Their amount does not decrease in time and has no influence on the
number of particles of type T1 (see [4]).

2. The problem of finding the final probabilities. The states (0, β2),
β2 ∈ N, are absorbing for the Markov process ξ(t). Let ξ(0) = (α1, 0), α1 ∈ N,

be the initial state. Introduce the final probabilities q
(α1,0)
(0,β2) = limt→∞ P

(α1,0)
(0,β2) (t) and

the probability of extinction qα10 =
∑∞
β2=0 q

(α1,0)
(0,β2) . Denote by ηα1 the random number

of particles of type T2 remaining in the process when its evolution stops. The final

distribution {q(α1,0)
(0,β2) , β2 ∈ N} may be improper, i.e., qα10 5 1.

Introduce the generating functions

(2) fα1(u) =

∞∑
β2=0

q
(α1,0)
(0,β2) u

β2 , w0(z, u) =

∞∑
α1=0

zα1

α1!
fα1(u), |u| 5 1.

Set hlγ1
(u) =

∑∞
γ2=0 p

l
γ1γ2

uγ2 , |u| 5 1 and let plγ1
=
∑∞
γ2=0 p

l
γ1γ2

, l = 1, 2. The
criticality parameters of the branching process are denoted by

al = λl

(
∂hl(s, u)

∂s

∣∣∣
s=1,u=1

− l
)
, l = 1, 2

(see [4]).
It is known [4, Chap. 2, section 1] that if λ1 > 0, λ2 = 0 (a branching process

with no interaction), then qα10 = qα1
1 , where q1 is the closest to a zero nonnegative

root of the equation h1(s, 1) − s = 0. The final distribution for subcritical (a1 < 0)
and supercritical (a1 > 0) processes is asymptotically normal as α1 → ∞, while for
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the critical processes (a1 = 0) the final distribution is other than normal as α1 →∞
[4, Chap. 5, section 5].

In [5] for the case when λ1 = 0 and λ2 > 0, the asymptotic representation qα10 ∼
C0q

α1
2 , α1 → ∞, is found, where C0 > 0 and q2 is the closest to zero nonnegative

root of the equation h2(s, 1) − s2 = 0. In [6] limit theorems are proved for the final
distributions in subcritical (a2 < 0), critical (a2 = 0), and supercritical (a2 > 0)
processes which are similar to the results established in [4].

A particular case with λ1 > 0, λ2 > 0 is considered in [7, Corollary 1] where,
for a supercritical (a2 > 0) process with h1(s, u) = h1

0(u) + h1
2(u) s2, h2(s, u) =

h2
0(u) + h2

1(u) s + h2
3(u) s3 and under the conditions p1

2 > 0, p2
3 > 0, p1

0 + p2
0 > 0,

p2
0 + p2

1 > 0, q2 > q1, the asymptotic representation qα10 ∼ Cqα1
2 /αα1 , α1 → ∞ is

found, where C > 0 and α > 0 .
The present paper deals with the subcritical (a2 < 0) process. Explicit expres-

sions for the generating function fα1(u), asymptotic estimates for the expectation
mα1 = Eηα1 and the variance σ2

α1
= Dηα1 as α1 → ∞, and asymptotic normality of

the final distribution are established under additional constraints on the probability
distributions {plγ1γ2

}, l = 1, 2. The generating function w0(z, u) is found as an explicit
solution of a stationary Kolmogorov equation.

Limit distributions for branching processes with pairwise interaction were consid-
ered in [11] and [12].

3. First Kolmogorov equation for the exponential generating function
of final probabilities. Introduce the generating function [6]

Wβ1(t; z, u) =

∞∑
α1=0,β2=0

zα1

α1!
P

(α1,0)
(β1,β2)(t)u

β2 , β1 ∈ N,

and the differential operators

hl

(
∂

∂z1
, u

)
=

∞∑
γ1,γ2=0

plγ1γ2
uγ2

∂γ1

∂zγ1

1

, |u| 5 1, l = 1, 2.

Theorem 1. For any β1 ∈ N, the generating function Wβ1(t; z, u) of transition
probabilities satisfies the following linear partial differential equation:

(3)
∂Wβ1

∂t
=

[
λ2z

2

(
h2

(
∂

∂z
, u

)
− ∂2

∂z2

)
+ λ1z

(
h1

(
∂

∂z
, u

)
− ∂

∂z

)]
Wβ1

with the initial condition Wβ1(0; z, u) = zβ1/β1!.
The derivation of (3) is based on (1) and the following relationships for the tran-

sition probabilities: P
(α1,α2)
(β1,β2) (t) = P

(α1,0)
(β1,β2−α2)(t) if α2 5 β2, P

(α1,α2)
(β1,β2) (t) = 0 if α2 > β2

(cf. [6, Theorem 1]).
Similarly to [6] one can show that w0(z, u) = limt→∞W0(t; z, u) and that w0(z, u)

meets the first stationary equation

(4)

[
λ2z

(
h2

(
d

dz
, u

)
− d2

dz2

)
+ λ1

(
h1

(
d

dz
, u

)
− d

dz

)]
w0(z, u) = 0.

The equality q
(0,0)
(0,0) = 1 implies w0(0, u) ≡ 1. Observe that w0(z, u) is, for |u| < 1,

an analytical function in variables z and u, since

|w0(z, u)| 5
∞∑

α1=0

|z|α1

α1!

∞∑
β2=0

q
(α1,0)
(0,β2) |u|β2 5

∞∑
α1=0

|z|α1

α1!
= e|z|.
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The ordinary differential (4), whose coefficients are linear functions of z, is a
Laplace-type equation [10, Vol. 1, Chap. 5, section 22.4]. Its solution is constructed
by the method of definite integral

w0(z, u) =

∫
K

ezsϕ(s, u) ds,

where

(5) ϕ(s, u) =
1

h2(s, u)− s2
exp

(
λ1

λ2

∫
h1(v, u)− v
h2(v, u)− v2

dv

)
,

and the curve K in the complex s-plane satisfies the condition

(6)

∫
K

d

ds
ezs(h2(s, u)− s2)ϕ(s, u) ds = 0.

To find the form of K it is necessary to consider the Riemann surface of the
corresponding function ϕ(s, u) (see [10]).

4. Integral representation for generating function fα1(u). The case
h1(s, u) = h1

0(u) + h1
1(u) s+ h1

2(u) s2, h2(s, u) = h2
0(u) + h2

1(u) s+ h2
2(u) s2,

p1
0 > 0, p2

2 < 1. Equation (4) for the function w0(z, u) is an equation of the second
order(

λ2(h2
2(u)− 1) z + λ1h

1
2(u)

) d2w0(z, u)

dz2
+ (λ2h

2
1(u) z + λ1(h1

1(u)− 1))
dw0(z, u)

dz

+ (λ2h
2
0(u) z + λ1h

1
0(u))w0(z, u) = 0.(7)

Let hlγ1
(u), γ1 = 0, 1, 2, l = 1, 2, be analytical functions for all u. Denote by ϕ0(u)

and ϕ1(u) the roots of the quadratic equation h2(s, u)− s2 = 0. The functions ϕ0(u)
and ϕ1(u) are analytical in the domain |u| < 1 except for a final number of points.
Integrating in (5) gives a general solution of (7) in the form (ϕ0(u) 6= ϕ1(u)),

(8) w0(z, u) =

2∑
n=1

Cn(u)

∫
Kn

e(z+d0(u)) s(s− ϕ0(u))ν0(u)−1(s− ϕ1(u))ν1(u)−1 ds,

where

d0(u) =
λ1

λ2

h1
2(u)

h2
2(u)− 1

, νl(u) =
λ1

λ2

h1(ϕl(u), u)− ϕl(u)

h′2(ϕl(u), u)− 2ϕl(u)
, l = 0, 1,

and C1(u) and C2(u) are arbitrary functions (here we have used the notation h′2(s, u) =
∂h2(s, u)/∂s). The curves K1 and K2 satisfy condition (6); the integrals over these
curves are linearly independent functions in variable z. Note that the functions ν0(u)
and ν1(u), as well as the parameters α and β, are defined (see [7]).

The function d0(u) is analytical for |u| < 1. The analyticity of ν0(u), ν1(u)
in the domain |u| < 1 (except for a finite set of points) follows from the equality
h′2(ϕl(u), u)− 2ϕl(u) = (−1)l(h2

2(u)− 1)(ϕ0(u)− ϕ1(u)), l = 0, 1.
The choice of the integration curves in (8) is related to consideration of the branch-

ing points ϕ0(u) and ϕ1(u) of the integrands. If K1 is a curve having the form of
a doubled closed contour bypassing the points ϕ0(u) and ϕ1(u) first in the counter-
clockwise and then in the clockwise direction (compare with [9, Chap. 6, section 11,
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integral representation (1)]), then integral (8) gives a function analytical in the do-
main |u| < 1, except for a finite set of points at which ϕ0(u) = ϕ1(u). The values
of w0(z, u) at the mentioned points are specified by continuity.

Further, it is necessary to use another integral representation for w0(z, u) being
valid in a vicinity of u = 1. Since h2(1, 1) = 1, we set ϕ0(1) = 1. The conditions p2

2 < 1
and ϕ0(1) = 1 imply −1 5 ϕ1(1) 5 0. Hence, on account of h1(1, 1) = 1 and p1

0 > 0,
we obtain ν0(1) = 0, ν1(1) > 0. Therefore, in view of the continuity of ν1(u) at
point u = 1, the inequality Re ν1(u) > 0 is valid in the domain |u − 1| < ε for an
ε > 0. For Re ν1(u) > 0 one can take for K1 a closed contour which starts and ends
at point ϕ1(u) and bypasses point ϕ0(u) in the counterclockwise direction (compare
with [9, Chap. 6, section 11, integral representation (3)]). The curve K2 is taken as
an infinite loop passing along the cut line specified by the ray arg(s − ϕ1(u)) = θ,
Re((z+d0(u)) eiθ) < 0 and bypassing ϕ1(u) in the counterclockwise direction (compare
with [9, Chap. 6, section 11, integral representation (9)]). Since the function specified
by the integral along K2 is not analytical for z = −d0(u), we set C2(u) ≡ 0. The
function C1(u) is specified by the condition w0(0, u) ≡ 1. The change of variable
s = ϕ0(u) + (ϕ1(u) − ϕ0(u)) v in (8) gives a representation of the form (in what
follows, d(u) = d0(u)(ϕ1(u)− ϕ0(u)))

(9) w0(z, u) =
1

A(u)

∫ (0+)

1

ez(ϕ0(u)+(ϕ1(u)−ϕ0(u)) v)+d(u) v vν0(u)−1(1− v)ν1(u)−1 dv,

where

(10) A(u) =

∫ (0+)

1

ed(u) vvν0(u)−1(1− v)ν1(u)−1 dv, |u− 1| < ε.

Theorem 2. Consider a branching process with h1(s, u) = h1
0(u) + h1

1(u) s +
h1

2(u) s2, h2(s, u) = h2
0(u) + h2

1(u) s + h2
2(u) s2 and p1

0 > 0, p2
2 < 1. The generating

function of the final distribution admits for |u− 1| < ε the representation

(11) fα1
(u) =

1

A(u)

∫ (0+)

1

ed(u) v(1− v)ν1(u)−1 (ϕ0(u) + (ϕ1(u)− ϕ0(u)) v)α1

v1−ν0(u)
dv.

Formula (11) follows from the integral representation (9) and definition (2).
Further, we assume that the integration contour in (10) and (11) consists of an

interval directed from v = 1 to v = r, 0 < r < 1, the circle |v| = r, and the interval
directed from v = r to v = 1. Since for u = 1 the integrands are single-valued functions
in the domain |v| 5 1, the integration over the interval [r, 1] in both directions gives
zero. Calculating the integrals over the circle |v| = r by the residuals at point v = 0,
which is a first order pole, we find A(1) = 2πi and fα1(1) = 1. In particular, the
probability of extinction is qα10 = 1, α1 ∈ N.

Remark 1. Equation (7) reduces to a degenerate hypergeometric equation (see
[10, Vol. 3, Chap. 2, Equations (2.113), (2.145)], [8, Chap. 16, Example 5]). The
exponential generating function is represented as follows:

(12) w0(z, u) = ezϕ0(u) Φ(ν0(u), ν0(u) + ν1(u); z(ϕ1(u)− ϕ0(u)) + d(u))

Φ(ν0(u), ν0(u) + ν1(u); d(u))
,

where

(13) Φ(a, b; z) = 1 +

∞∑
n=1

a(a+ 1) · · · (a+ n− 1)

b(b+ 1) · · · (b+ n− 1)

zn

n!
, b 6= 0,−1,−2, . . . ,
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is the degenerate hypergeometric function [9]. For |u| 5 1, representation (12) holds
for all but a finite number of points.

5. Expectation of the final distribution. The case h1(s, u) = h1
0(u)+

h1
1(u) s+ h1

2(u) s2, h2(s, u) = h2
0(u) + h2

1(u) s+ h2
2(u) s2, p1

0 > 0, p2
2 < 1. We

calculate the expectation mα1
= f ′α1

(1). Differentiating the ratio (11), we obtain
(α1 > 0)

mα1
=

1

2πi

∫ (0+)

1

d

du

(
ed(u) v(1− v)ν1(u)−1 (ϕ0(u) + (ϕ1(u)− ϕ0(u)) v)α1 − 1

v1−ν0(u)

) ∣∣∣∣
u=1

dv

=
d′(1)

2πi

∫ (0+)

1

ed(1) v(1− v)ν1(1)−1 ((1 + (ϕ1(1)− 1) v)α1 − 1) dv(14)

− ν′1(1)

2πi

∫ (0+)

1

ed(1) v(1− v)ν1(1)−1 log(1− v) · (1 + (ϕ1(1)− 1) v)α1 − 1

v
dv(15)

+
ν′0(1)

2πi

∫ (0+)

1

ed(1) v(1− v)ν1(1)−1 log v · (1 + (ϕ1(1)− 1) v)α1 − 1

v
dv

+
α1

2πi

∫ (0+)

1

ed(1) v(1− v)ν1(1)−1(ϕ′0(1) + (ϕ′1(1)− ϕ′0(1)) v)

× (1 + (ϕ1(1)− 1) v)α1−1

v
dv.(16)

Integral (14) equals zero since the integrand has no singular points for |v| < 1.
Calculating the residuals at point v = 0, we see that integral (15) equals zero and
integral (16) equals ϕ′0(1)α1. Thus, for the expectation we have
(17)

mα1 = ϕ′0(1)α1 − ν′0(1)

2πi

∫ (0+)

1

ed(1) v(1− v)ν1(1)−1 log v
1− (1− (1− ϕ1(1)) v)α1

v
dv.

We transform the integrand in (17) using the sum of the geometric progression

1 − (1 − (1 − ϕ1(1)) v)α1 = (1 − ϕ1(1)) v
∑α1−1
k=0 (1 − (1 − ϕ1(1)) v)k, and expansions

of the polynomial and exponent in terms of powers of 1 − v. We have

(1− ϕ1(1))

∫ (0+)

1

ed(1) v(1− v)ν1(1)−1 log v ·
α1−1∑
k=0

((1− ϕ1(1))(1− v) + ϕ1(1))k dv

= ed(1)
α1−1∑
k=0

k∑
l=0

Clk(1− ϕ1(1))l+1ϕk−l1 (1)

×
∞∑
m=0

(−d(1))m

m!

∫ (0+)

1

(1− v)ν1(1)+l+m−1 log v dv.(18)

We integrate by parts the contour integral and, calculating the residual at point
v = 0, pass to an integral over the real half-line:

1

2πi

∫ (0+)

1

(1− v)ν1(1)+l+m−1 log v dv =
1

2πi

∫ (0+)

1

(1− v)ν1(1)+l+m

(ν1(1) + l +m) v
dv

=
1

ν1(1) + l +m
=

∫ +∞

0

e−(ν1(1)+l+m) v dv.
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Substitution of the last integral into (18) and summation of (17) leads to the
following expression:
(19)

mα1 = ϕ′0(1)α1 − ν′0(1)

∫ +∞

0

ed(1)(1−e−v)−ν1(1) v 1− ((1− ϕ1(1)) e−v + ϕ1(1))α1

1− e−v dv.

Theorem 3. Let the conditions of Theorem 2 be valid. Then the expectation of
the final distribution has the following asymptotic representation:

(20) mα1
= ϕ′0(1)α1 − ν′0(1) logα1 +O(1), α1 →∞.

Proof. Using the representation

log x =

∫ +∞

0

e−v − e−xv
v

dv, x > 0,

[9, Chap. 1, section 7, formula (18)], we split the integral in (19) into the sum of
integrals. Then

∫ +∞

0

ed(1)(1−e−v)−ν1(1) v 1− ((1− ϕ1(1)) e−v + ϕ1(1))α1

1− e−v dv

= log((1− ϕ1(1))α1 + ν1(1)) +

∫ +∞

0

(
ed(1)(1−e−v)−ν1(1) v

1− e−v − e−v

v

)
dv(21)

+

∫ +∞

0

(
1

v
− 1

1− e−v
)
ed(1)(1−e−v)−ν1(1) v ((1− ϕ1(1)) e−v + ϕ1(1))α1 dv(22)

+

∫ +∞

0

1− ed(1)(1−e−v)

v
e−((1−ϕ1(1))α1+ν1(1)) v dv(23)

+

∫ log(1−1/ϕ1(1))

0

e−(1−ϕ1(1))α1v − ((1− ϕ1(1)) e−v + ϕ1(1))α1

v

× ed(1)(1−e−v)−ν1(1) v dv(24)

+

∫ +∞

log(1−1/ϕ1(1))

e−(1−ϕ1(1))α1v − ((1− ϕ1(1)) e−v + ϕ1(1))α1

v

× ed(1)(1−e−v)−ν1(1) v dv.(25)

Summands (24) and (25) vanish if ϕ1(1) = 0. The integrands in integrals (21)–(24)
are bounded as v → 0+. Hence the integrals are convergent. Integrals (22), (23),
and (25) tend to zero as α1 → ∞. To evaluate integral (24) we make use of the
inequality 1− xα1 5 α1(1− x) for 0 < x < 1 and the boundness of the function

y(v) =
e−(1−ϕ1(1)) v − (1− ϕ1(1)) e−v − ϕ1(1)

ve−(1−ϕ1(1)) v
, 0 < v < log

(
1− 1

ϕ1(1)

)
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(since limv→0 y(v) = 0). For (24) we have∫ log(1−1/ϕ1(1))

0

(
1−

(
(1− ϕ1(1)) e−v + ϕ1(1)

e−(1−ϕ1(1)) v

)α1
)
ed(1)(1−e−v)−ν1(1) v−(1−ϕ1(1))α1v

v
dv

5 α1

∫ log(1−1/ϕ1(1))

0

y(v) ed(1)(1−e−v)−ν1(1) v−(1−ϕ1(1))α1v dv

5 α1e
d(1) sup y(v)

∫ log(1−1/ϕ1(1))

0

e−(1−ϕ1(1))α1v dv 5 ed(1)

1− ϕ1(1)
sup y(v).

The boundness of the values of integrals (21)–(25) and the equality log((1−ϕ1(1))α1+
ν1(1)) = logα1 +O(1), α1 →∞, justifies the validity of (20). The theorem is proved.

For the case h2(s, u) = p2
0 +p2

1s (pairwise interactions give no particles of type T2)
we have ϕ0(u) ≡ 1, ϕ1(u) ≡ −p2

0, and mα1
= (λ1/λ2) a1

2 logα1/(1 + p2
0) + O(1),

α1 → ∞, where a1
2 = (∂h1(s, u)/∂u) |s=1,u=1 is the expectation of the number of

particles of type T2, appearing when a particle of type T1 dies out [12].
It is still unclear whether is it possible or not to find, based on representation (11),

an asymptotic representation, as α1 →∞ for the variance of the final distribution.

6. Limit theorem for the final distribution. The case h1(s, u) = h1
0(u)+

h1
1(u) s, h2(s, u) = h2

1(u) s+ h2
2(u) s2, p1

0 > 0, p2
2 < 1. In the case under con-

sideration, ϕ0(u) = h2
1(u)/(1 − h2

2(u)), ϕ1(u) ≡ 0, and d(u) ≡ 0. On account of
the equality Φ(a, b; z) = ezΦ(b − a, b;−z) [9, Chap. 6, section 3] and (12) we have
w0(z, u) = Φ(ν1(u), ν0(u) + ν1(u); ϕ0(u) z). Recalling (13) and equating coefficients
of one and the same powers of z in the series for w0(z, u) (derived by the above men-
tioned representation) and the series (2), we obtain the generating function of the
final distribution (α1 > 0):

(26) fα1
(u) = ϕα1

0 (u)
ν1(u) · · · (ν1(u) + α1 − 1)

(ν0(u) + ν1(u)) · · · (ν0(u) + ν1(u) + α1 − 1)
, |u| 5 1.

Taking into account the property of the Gamma-function Γ(z+α1) = z(z+1) · · · (z+
α1 − 1) Γ(z), we deduce the representation

(27) fα1(u) = ϕα1
0 (u)

Γ(ν1(u) + α1)Γ(ν0(u) + ν1(u))

Γ(ν0(u) + ν1(u) + α1)Γ(ν1(u))
.

Using the equalities ν1(u) = (λ1/λ2)h1
0(u)/h2

1(u), ν0(u) + ν1(u) = (λ1/λ2)(1 −
h1

1(u))/(1−h2
2(u)), one can establish the analyticity of the function (26) in the domain

|u| < 1+ε for some ε > 0. Let us calculate the expectation mα1 = f ′α1
(1) and variance

σ2
α1

= f ′′α1
(1) + f ′α1

(1) − (f ′α1
(1))2. Differentiating (27), we make use of the function

ψ(z) = d log Γ(z)/dz [9, Chap. 1, section 7], [8, Chap. 12]. As a result we get

mα1
= ϕ′0(1)α1 − ν′0(1)

(
ψ(ν1(1) + α1)− ψ(ν1(1))

)
,(28)

σ2
α1

=
(
ϕ′′0(1) + ϕ′0(1)− (ϕ′0(1))2

)
α1(29)

− (ν′′0 (1) + ν′0(1)
)(
ψ(ν1(1) + α1)− ψ(ν1(1))

)
− ν′0(1)

(
ν′0(1) + 2ν′1(1)

)(
ψ′(ν1(1) + α1)− ψ′(ν1(1))

)
.(30)

Formula (28) can also be deduced by (19) and the integral representation for ψ(z)
in [9, Chap. 1, section 7, formula (17)].
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Theorem 4. Let a branching process with h1(s, u) = h1
0(u) + h1

1(u) s, h2(s, u) =
h2

1(u) s+ h2
2(u) s2 and p1

0 > 0, p2
2 < 1 be given. Then the expectation and variance of

the final distribution have the asymptotic formulas

mα1 ∼ ϕ′0(1)α1 − ν′0(1) logα1 + ν′0(1)ψ(ν1(1)),(31)

σ2
α1
∼ (ϕ′′0(1) + ϕ′0(1)− (ϕ′0(1))2)α1 − (ν′′0 (1) + ν′0(1)) logα1, α1 →∞.(32)

To derive (31) and (32) it is necessary to use (28) and (30) and the asymptotic
formulas ψ(z) ∼ log z, ψ′(z) ∼ 1/z as z →∞, | arg z| < π (see [9, Chap. 1, section 18]).

Theorem 5. Let the conditions of Theorem 4 be valid, and either ∂h1(s, u)/∂u 6≡
0 or ∂h2(s, u)/∂u 6≡ 0. For any fixed x ∈ (−∞,∞),

(33) lim
α1→∞

P

{
ηα1 −mα1

σα1

< x

}
=

1√
2π

∫ x

−∞
e−y

2/2 dy.

Proof. We show that the characteristic function f̂α1(τ) = E exp(iτ(ηα1−mα1)/σα1)
of the scaled random variable (ηα1−mα1)/σα1 converges, as α1 →∞, to exp(−τ2/2),
which is the characteristic function of the standard normal distribution [3].

Introduce the function yα1(τ) = exp (iτ/σα1). Then f̂α1(τ) = yα1(−mα1τ) fα1(yα1(τ))
and (27) yields

f̂α1(τ) = yα1(−mα1τ)ϕα1
0 (yα1(τ))

Γ(ν1(yα1
(τ)) + α1)Γ(ν0(yα1

(τ)) + ν1(yα1
(τ)))

Γ(ν0(yα1(τ)) + ν1(yα1(τ)) + α1)Γ(ν1(yα1(τ)))
.

Using the Taylor expansion logϕ0(ev) = ϕ′0(1) v+(ϕ′′0(1)+ϕ′0(1)−(ϕ′0(1))2) v2/2+
o(v2), v → 0, we obtain as α1 →∞
(34)

ϕα1
0 (yα1(τ)) = exp

(
iτ
ϕ′0(1)α1

σα1

− τ2 (ϕ′′0(1) + ϕ′0(1)− (ϕ′0(1))2)α1

2σ2
α1

+ o

(
α1

σ2
α1

))
.

By Stirling’s formula Γ(z) ∼ √2π exp((z − 1
2 ) log z − z), z →∞, | arg z| < π, we

deduce

Γ(ν1(yα1(τ)) + α1)

Γ(ν0(yα1
(τ)) + ν1(yα1

(τ)) + α1)

∼ exp

((
ν1(yα1

(τ)) + α1 − 1

2

)
log

(
1− ν0(yα1(τ))

ν0(yα1
(τ)) + ν1(yα1

(τ)) + α1

)
− ν0(yα1

(τ)) log(ν0(yα1
(τ)) + ν1(yα1

(τ)) + α1) + ν0(yα1
(τ))

)
.(35)

Since log(1 + z) ∼ z, z → 0, and ν0(yα1(τ)) → 0, ν1(yα1(τ)) → ν1(1) as α1 → ∞,
the first summand under the exponent sign in (35) vanishes. Since log(ν0(yα1(τ)) +
ν1(yα1(τ)) + α1) ∼ logα1, α1 →∞, we have

(36)
Γ(ν1(yα1(τ)) + α1)

Γ(ν0(yα1
(τ)) + ν1(yα1

(τ)) + α1)
∼ exp(−ν0(yα1

(τ)) logα1).

Using the Taylor expansion ν0(ev) = ν′0(1) v+(ν′′0 (1)+ν′0(1)) v2/2+o(v2), v → 0,
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we derive from (36) as α1 →∞
Γ(ν1(yα1

(τ)) + α1)

Γ(ν0(yα1(τ)) + ν1(yα1(τ)) + α1)

= exp

(
− iτ ν

′
0(1) logα1

σα1

+ τ2 (ν′′0 (1) + ν′0(1)) logα1

2σ2
α1

+ o

(
logα1

σ2
α1

))
.(37)

Multiplying yα1(−mα1τ), (34), and (37) and observing that

Γ(ν0(yα1
(τ)) + ν1(yα1

(τ))) ∼ Γ(ν1(yα1
(τ))), α1 →∞,

we have for h2(s, u) 6= s

f̂α1
(τ) = exp

(
iτ
ϕ′0(1)α1 − ν′0(1) logα1 −mα1

σα1

− τ2 (ϕ′′0(1) + ϕ′0(1)− (ϕ′0(1))2)α1 − (ν′′0 (1) + ν′0(1)) logα1

2σ2
α1

+ o

(
α1

σ2
α1

))
.

(38)

If h2(s, u) = s, we see that ϕ0(u) ≡ 1, and the remainder term in the last formula
is o(logα1/σ

2
α1

). Estimate (31) implies that the first summand under the exponent
sign in (38) tends to zero. Applying to the second summand and the remainder term
the asymptotic representation (32), we obtain

lim
α1→∞

f̂α1(τ) = exp

(
− τ2

2

)
.

The theorem is proved.
Remark 2. The probability generating function (26) can be written as a product

fα1(u) = g1(u) · · · gα1(u),

where gn(u) = ϕ0(u)(ν1(u) + n − 1)/(ν0(u) + ν1(u) + n − 1), n = 1, . . . , α1, are
probability generating functions. Applying Lyapunov’s theorem [3, section 40] to
the sum ηα1 = η1 + · · · + ηα1 of independent random variables ηn with generating
functions gn(u) aiming to derive (33) requires us to verify the validity of the conditions
of the mentioned theorem.
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