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BRANCHING PROPERTY FOR A POISSON-TYPE DEATH PROCESS 

A. V. K a l i n k i n  (Moscow, Russia) UDC 519.2 

A generalized branching property for the transition probabilities of a Poisson-type pure death process is obtained. 

1. Def in i t ion  of a P u r e  Dea th  Process  

Let ~t, t E [0, c~), be a time-homogeneous Markov process with state space {0,1,2, . . .  }. Denote by 

P , j ( t ) = P { ( , = j l ( o = i } ,  i , j = O ,  1 . . . . .  

the transition probabilities of ~t. Assume that 

P,.i_l(t)=~,t+o(t), P , ( t ) = l - ~ , t + o ( t )  as t ~ o ,  

where P0 = 0, #i > 0, i = 1 , 2 , . . . .  
For this pure death process ~t, the exact formulas for the transition probabilities are known: 

e o j ( t ) = ~  ~ j = 0 , 1  . . . . .  P o ( t ) = 0 ,  j > i > _ l ,  

i e _ ~  t 

P~j(t) J _< i. #~.- 
?_L (~, _ ~ k ) . . - ( ~ k + l  - ~ ,k ) (~-1  - ~ ) . . - ( ~ j  - ~,~)' 
k=j 

Here and in what follows, we use the Kronecker symbol 

f 1, if i = 5 ,  
/ O, i f i # j .  

2. Kolmogorov  Equa t ions  for the G e n e r a t i n g  F u n c t i o n  of the  Trans i t ion  Probab i l i t i e s  

Introduce the generating functions of the transition probabilities: 

F i ( t ; s ) = ~ P i ~ ( t ) s  j ,  i = 0 , 1  . . . .  , Isl<_l. 
j=0 

Assume that f ( s )  is analytic at O: 

f ( s )  = ~ a / .  
j = o  

Consider the Gelfond-Leontiev operator of the generalized derivative: 

D,(f) = ~ a ~ s  j-'. 
j = l  

The second {forward} system of Kolmogorov differential equations for the transition probabilities Pij (t) of ~ can be 
written more compactly by means of the generating functions and the operator of the generalized derivative: 

0"--'~ = (1 -- s)Ds(Fi),  

with boundary condition Fi(O, s) = s i. 
Indeed, the second Kolmogorov system of equations for a pure death process has the form 

dPio(t) dei j ( t )  
dt = Pil (t)#l,  dt = - P i j  (t)l.tj + Pid+l (t)Pj+l, J = 1, 2 . . . .  
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We have the chain of equalities 

OFi o0 .. oo oo 

j----0 j = l  j = 0  

oo oo 

= - s  Z PiJ(t)/~Js/-1 + ~ P l j ( t ) # j s J - 1  = - s D , ( F i )  + D , (F i )  = (1 - s ) D , ( F i ) .  

3. B r a n c h i n g  P r o p e r t y  fo r  a L i n e a r  D e a t h  P r o c e s s  

In the case of a linear death  process, i.e., when #~ = i#  (/~ > 0), 

d 
D ,  = #~ss' 

we have the part ia l  differential equation ([1, Chap. 1, w Theorem 5]) 

cOFi (t; s) , OFi(t;  s) 
cOt = ~u(1 - -  s) ~s 

with boundary condition Fi(0, s) ---- s i. 
In the linear case, the exact formulas for the t ransi t ion probabilit ies have the form 

P~j(t) = 0, j > i ,  

P i j ( t )  = C~(1 - e - ~ ' t ) i - J ( e - " t )  j ,  j <_ i. 

Here, the branching property takes place: 

(see [1, Chap. 1, w (5)]), where 

(see [1, Chap. 1, w Ex. 2]). 

4. T h e  R e s u l t s  

F , ( t ;  s )  = F~(t; ~), i = o, 1 , . . .  

F l ( t ;  s) = 1 - e -"~ + se - ~ t  

For a Poisson-type death process, i.e., when/z0 -- O,/~i -- #, i = 1, 2 , . . . ,  

we have (see [6]) 

f(s) - f(o) 
Ds(f) =# 

$ 

oFf(t,  s) s) - F~(t; o) 
0t ----/z(1 - s) Fi( t ;  s 

with boundary condition Fi(0, s) = s (. 
In the Poisson case, the exact formulas for the transi t ion probabili t ies Pij  (t)  are 

# t  _ .  t i - i  (~ t )  e_~, t 
Poo(t)  = 1 ,  Pio( t )  = 1 - e -~'t - 1-~.e " . . . . .  (i - 1)[ ' 

Pi j ( t )  (--~t)-iZe-~'t 1 < j < i, 
= ( i  - j ) !  ' - - 

THEOREM 1. For  a P o i s s o n - t y p e  death p ro ces s  ~t (i = 0, 1 , . . .  ; w 2 = - 1 )  

, e - u t ,  

P q ( t )  = o, j > i .  
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i---- 1 , 2 , . . . ,  

, ]...,,..-. ) 
F i ( t ; s )  = 1 + ~ai(x, Tl, U;S)] ,dz l  - -  du  dx ,  

z 
0 O+ 0 

(1) 

(2) 



where 
1 1 - z  1 - z  

= - + r l ~ - ~ - ~ + s - -  ~(x ,  ll, u; s) u 1 + 0 

is a linear funct ion in s. 

In (2) and in the arguments below, we use the following notation for a function of several variables: 

OH(z, ~; s) 
[H(x,  u; s)]'= - Ox 

The proof of Theorem 1 is based on direct calculations of transition probabilities (1). Indeed, we note that  (2) is 
equivalent to the equality 

P~.~ (if) = ~o + S (  1 f [ S [ c ~ ( ~ ~  + 71]--~--~ x ' -3  /" l - x h ~ ] ' &7 ] ' e~'t < " "  - ' ) .i__~_~ ) ] ~ -u du dx  , 

0 04- 0 

j < i .  

Calculating the integral above, for j _> 1 we obtain 

( f [  (~)'-' ] ) 1 _ C  7 (1 - z)-~ ' e~"("=-l) 
- -  du dx PiS (t) = ~ = u 

0 04- 

1 1 

0 O +  0 

(#~t)~-~ (~t)~-J e-"' 
= e-"tjCJi B ( i  - j + l , J )  (i _ j)------~. - (i _ j)--i. �9 

Here, for integer positive n and m 

B(n,m) : f : = - ' ( 1  - : ) m _ , ~ :  
(n - 1)! (m - 1)! 

(n + m - 1)! 

is the beta-function. Calculate Pi0(t) for i > 1: 

/( f[f[(' }'~.,<=-,, ) 1 1 - x ' ~ ' ] '  dr# - -  du dx Rio(t) = 1 + ~ u + 77 1 - - ~ )  ] ,  : u 

0 04- 0 

1 [(~ ) , ) 
- - -  du  dx  = 1 +  ~ + l - z  , , ~ / j =  u 

0 O+ 

1 _rr '__~,('_+ )'-'~'<=-'> ) 
= 1  J k 21rw J \ u 1 -  z --u du dx 

0 O + 

=l-e-"< [ ( - - I , ( ~ C ~ , ( - ~  (1-~1 '-~-~ ~ ~ 
Jo \27rw J \ k - o  - \ u ]  

O+ 

1 i - - 1  

k! dx 
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' - ~  - k )  ( l u ) k  l i t  _ , ( u t )  i - ~  --1-e-"'~ic~_,=(k+l,i . . . . ~ . - - l _ e - n t  l~.e t~ ( i  _ 1 ) ! e - . ,  ' 
k = O  

Calculation of P00(t) gives us the value 1. 
To obtain (2) one can consider the exponential (double) generating function (see [3]) of the transition probabilities 

Pij(t) and use a special summation formula of the Bessel function theory [9]. 

5. Branching Property for a Square-Type Death Process 

We recall the main results of [4] and [10]. 
In the case of a square-type death process, i.e., when #i -- i(i - 1)/~, 

d 2 
D, = ps~-s~, 

we have the following second-order partial differential equation (see [2; 3, Theorem 1; [5]): 

aF/(t; s) 2, 6aRc(t; s) 
= ~ , ( , - s  j ~ , 

with boundary condition Fi(0, s) = s i. 
In the square case, the exact formulas for the transition probabilities Pij(t) have the form 

Pij(t)=6~., i = 0 , 1 ,  j = 0 , 1  . . . .  , Pij(t)=O, j > i > _ 2 ,  eio(t)=a~, 

(3) 

( i -  1)!i! ~ ( - 1 ) k - J ( 2 k -  1)(k + j -2)!e_k(k_l)~,,, 
Pij ( t )= ~ -  1)!j! (-T~- ~ + 'k  ~- l~.l  (/~ -- j'~. 1 l < _ j < i .  

k = j  

The integral representation for the transition probabilities Pij(t) given in [4] is analogous to representation (2). 

THEOREM 2. For a square-type pure death process ~t ( i = O, 1, . . .  ; w 2 = -1)  the fol]owing relation is vafid: 

(4) 

i [] ( / ) ]  e at~4 1 1 i d7 
F i ( t ; s ) = l + ~  e -~''/("') ~ ~ ~a O L Y ; S ) ~ / l _ 2 7 Y + 7  2. dy ,dr '  

- -oo  c o s  2 v  O +  

(5) 

where 
(7 - 1)/2 - (x/1 - 27y + 7 2 )/2 + s 

~(7,  y; s) = 
77 

is a linear function in s. 

Thus, for j _< i the transition probabilities can be written as 

J [] e~t/4 e-~, 2 /D,t) 
e,j(t) = 5o + 2 ~  ~/y - c o s  2v 

--  oo c o s  2 v  

1 ( 7  - 1 - ~/1 - 27y + - " drl ' 
X 

0 +  

To prove Theorem 2 one should evaluate the integral above and arrive at (4) for the transition probabilities in 
question. The integral with respect to 7 is calculated by means of the generating function of Legendre polynomials 

1 /"  1 dr/ 
n =O, 1 , . . . ,  

P"(Y) = ~ ) V1 - -  2Vy + 772 77 "+~' 
0 +  

and gives a linear combination of Legendre polynomials. Having done this, one can use the standard integrals 

1 
2 k - i  / 

sin(2k - 1)v = 

cos 2 v  

P~-I (y) dy 
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7 e~t/4 
e -k(k-l)"t = ~  - -  / e - ' ; /(u')  cos(2k - 1)v dv. 

- - o o  

In particular, for j = i , i  - 1 , i -  2 , . . . ,  by simple calculations we get the following formulas for the transition 
probabilities: 

Pii(t) = e -i(i-1)"t, 

P~,~_,(t) = 2(e (' ')(' 2)~, _e-i(~-~).~), 

i(i- 1) . Pi,i-2(t) = 4"~/--" 3") ((' - 1)e-(i-2)(i-a)~" - (2i - 3)e -(i-U(i-2)"t + (i - 2 ) e - i ( i - l ) " t ) ,  

and so on. 
Formula (5) is obtained as the exact close solution of the parabolic equation (3). The method of separation of 

variables and summation formulas of the special function theory (see [10 D are used. 

6. D i s c u s s i o n  

Recall an assumption in [4]: the transition probabilities of any pure death process have the following nonlinear 
property: 

F i ( t ; s ) = E ( X t + s Y , )  i, i = 0 , 1  . . . . .  (6) 

where Xt, Yt are some correlated processes. This assumption is based on the de Finet t i -Khinchin theorem on the 
randomization of an infinite sequence of symmetrically dependent random variables (see [8, Chap. 7, w 

Consider a pure death process ~t. The process ~t stays at the initial state i for a random time ri with distribution 

P{~'i < t} = 1 - e -~'t.  

At time ri the process jumps to the state i - 1 and evolves further in a similar way. 
We consider the initial s tate i of the process as the existence of i particles of type T (see [2]). The  transition of the 

process to the state i - 1 is treated as the death of one particle from a collection of i particles. We obtain a random 
number p(l)(t) of descendants for every initial particle l (l = 1 , . . . , i ;  p(t)(t) is a random variable taking values 0 or 1). 
Here, the following relation holds: 

& = ~(')(t) + ~(~)(t) + . . .  + u(~>(t) 
(compare with the analogous relation in [I, Chap. I, w Assume that p(0 (t), I -- I , . . . ,  i, are symmetrically dependent 
random variables (interchangeable random variables). Then it follows from de Finetti-Khinchin theorem that the 
branching property for the randomized transition probabilities of the pure death process is expressed by (6) for the 
generating functions. 

7. Concluding R e m a r k s  

We call the integral representation (6) the generalized branching property. 
In applications [7], the derivation of the generalized branching property is of interest for a polynomial-type process, 

i.e., when #i -- iPp, 0 < p < 1. This derivation will be given in subsequent papers. 

REFERENCES 

1. B. A. Sevastyanov, Branching Processes [in Russian], Nauka, Moscow (1971). 
2. B. A. Sevastyanov, "On some type of Markov processes," Usp. Mat. IVauk, 4, No. 4, 194 (1949). 
3. B. A. Sevastyanov and A. V. Kalinkin, "Branching processes with interaction of particles," Dokl. Akad. Nauk SSSR, 

264, No. 2, 306-308 (1982). 
4. A. V. Kalinkin, "Branching property for a pure death process," in: The Third Russian School-Colloquium on 

Stochastic Methods, TVP, Moscow (1996), pp. 62-63. 
5. J. Letessier and G. Valent, "Some exact solutions of the Kolmogorov boundary value problem," Approx. Theory 

Appl., 4, No. 2, 97-117 (1988). 
6. P. R. Parthasarathy, "Density-dependent Markov branching processes," in: Proceedings of the Autumn Course 

Research Seminars on Mathematical Ecology, New York (1988), pp. 559-569. 
7. W. A. O. Waugh, "Uses of the sojourn time series for Markovian birth process," in: Proceedings of the S/xth 

Berkeley Symposium on Mathematical Statistics and Probability, Los Angeles (1972), pp. 501-514. 

1265 



8. W. Feller, An Introduction to Probability Theory and Its Applications, II, Wiley, New York (1966). 
9. A. V. Kalinkin, "Branching property for a Poisson-type death process," Teor. Veroyatn. Primen., 44, No. 1,177-178 

(1999). 
10. A. V. Kalinkin, "Branching property for the transition probabilities of a death process with pairwise interaction," 

Vestn. MGTU Baumana, 1, No. 2 (1999) (to appear). 

Department of Mathematics, 
Moscow State Technical University, 
~-d Baumanskaya, 5, 107005 Moscow, 
Russia 
e-mail: kalinkin@interd.bmgtu.msk.su 

1266 


