
Vol.:(0123456789)1 3

GPS Solutions           (2023) 27:91  
https://doi.org/10.1007/s10291-023-01433-5

ORIGINAL ARTICLE

Investigation into the nonlinear Kalman filter to correct the INS/GNSS 
integrated navigation system

Konstantin Neusypin1 · Andrey Kupriyanov2 · Andrey Maslennikov1 · Maria Selezneva1 

Received: 7 November 2021 / Accepted: 28 February 2023 
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023

Abstract
The integrated navigation system is the inertial navigation system (INS), corrected by global navigation satellite system 
(GNSS) data. The correction could be done algorithmically by utilizing nonlinear Kalman filtering (NKF). In practice, 
the NKF uses an INS error model as an a priori model that is not always adequate to handle the dynamics of the true and 
unknown INS error model. To eliminate such modeling errors, we propose a new INS/GPS correction approach with modi-
fied adaptive NKF. In the proposed NKF, instead of the a priori model, the model constructed during the pre-flight test for 
a particular INS is used. To realize this, the full algorithm includes an INS error model construction algorithm, a way of 
reduced measurement generation, and criteria for divergence detection. INS error model construction both during pre-flight 
test and during flight is done by the group method of data handling (GMDH). Flight experiments were performed for an 
empirical study of the INS error model and its effect on the total accuracy of computed navigational data. The navigational 
equipment was installed on the balloon—an airborne radio-transparent object. The results of the experiments validate the 
effectiveness and accuracy of the proposed INS/GPS correction approach.

Keywords Inertial navigation systems · GNSS · Nonlinear Kalman filter · Error model · Adaptation · Group method of data 
handling · GPStation6 · RTK · SPAN

Introduction

The accurate determination of the spatial location and tem-
poral relation of objects is essential in many applications. 
INS and GNSS applications are widespread, particularly in 
aviation (Proletarsky et al. 2019; Selezneva et al. 2019). The 
increasing accuracy of aircraft navigation measurements is 
typically achieved via correction algorithms. Usually, for 
INS correction, various estimation algorithms are applied, 

for example, a nonlinear Kalman filter (Zheng et al. 2018, 
Simon 2006; Julier and Uhlmann 1997). In NKF, an INS 
error model is used, and the estimation accuracy depends 
on the reliability of such a model. To create reliable and 
adequate model, the ideas of the federated Kalman filter (Ali 
and Jiancheng 2005; Yang et al. 2020) and the model con-
struction were used (Fantinutto et al. 2005; Kondo 1998). An 
evolutionary algorithm may also be used for this purpose. 
However, such an approach requires additional time to select 
or construct a model and needs a good performance of the 
onboard computer.

We propose constructing the INS error model during pre-
liminary pre-flight tests and then using it inside the adaptive 
version of the NKF. The advantage of this approach is the 
ability to use the error model of a specific INS with its own 
characteristics. During the INS operation, the error dynam-
ics will be slightly different, but its model will retain the 
individual characteristics of that particular INS. Therefore, 
studying these characteristics and their impact on the INS 
error model and, finally, on the accuracy of navigational data 
is an actual problem.
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The proposed algorithm verification must be carried out by 
analyzing the data of flight experiments. For this purpose, a 
mathematical modeling approach is applied. It involves using 
the a priori INS error model and GNSS error data usually 
represented by the white noise stochastic process (George 
and Sukkarieh 2005; Gao et al. 2006). The actual INS error 
dynamics depend on the INS type, individual characteristics, 
and specific environmental conditions. Therefore, the real situ-
ation in flight is different from the test models. To deal with 
that we used the results from flight experiments in our studies.

First, two NKF implementation methods, often used in 
INS correction, are presented. Then, we describe the GMDH 
(group method of data handling) algorithm used to construct 
the INS error model based on a measurement sample as a dif-
ference between the INS and GNSS data obtained in flight, 
followed by presenting a scalar criterion as an indicator of 
the non-measured state components of the estimation process 
convergence. We propose a new INS correction scheme as an 
algorithm using actual measurements and modified adaptive 
NKF realization. The subsequent sections describe the experi-
mental setup and provide the results of the experiments and 
corresponding discussions.

NKF implementation methods

In practice, strict requirements are imposed on the navigational 
data accuracy; therefore, the integration of the INS with GNSS 
and the subsequent information processing uses the NKF 
(Simon 2006; Carvalho et al. 1997). Suppose the equation for 
the state vector of the INS error model has the form:

where xk is the state vector, Fk

(
xk−1

)
 denotes the nonlinear 

vector function, wk is the input noise vector. The measure-
ment equation is the following,

where zk is the measurement vector, Hk is the measurement 
matrix, vk is the measurement noise vector, wk and vk are two 
uncorrelated discrete random processes similar to Gauss-
ian white noise processes with zero mean and covariance 
matrices Qk and Rk , respectively. The NKF equations take 
the form:

(1)xk = Fk

(
xk−1

)
+ wk

(2)zk = Hkxk + vk

(3)

x̂k = x̂k|k−1 + Kk(x̂k−1)[zk − Hkx̂k|k−1]
x̂k|k−1 = Fk(x̂k−1)

Kk(x̂k−1) = Pk|k−1HT
k
[HkPk|k−1HT

k
+ Rk]

−1

Pk|k−1 =
𝜕Fk(x̂k−1)

𝜕xT
k−1

Pk−1

[
𝜕Fk(x̂k−1)

𝜕xT
k−1

]T

+ Qk

Pk =
[
I − Kk(x̂k−1)Hk

]
Pk|k−1

where I denoted the identity matrix and Pk is the covariance 
matrix of estimation errors.

This type of NKF is applicable only when the posterior 
probability density is unimodal. However, when the poste-
rior probability density is multimodal, then the estimation 
algorithm should use a set of delta functions representing 
that posterior probability density.

There also exist approaches where the implementations 
of the NKF are reduced to solving a stochastic partial dif-
ferential equation written in the Ito or the Stratonovich form. 
However, such implementations require applying special 
integration rules that do not coincide with the usual ones, 
resulting in increased numerical operations and computa-
tional complexity.

It is possible to consider all aspects of the INS error 
dynamics, especially in the case of specific INS and envi-
ronmental conditions in flight. For instance, this could be 
done by constructing a nonlinear INS error model using 
one of the evolutionary algorithms (Fantinutto et al. 2005; 
Kondo 1998).

The constructed nonlinear model is further used as a ref-
erence model to ensure the adequacy of the NKF model and 
the real INS error dynamics. The diagram of the INS cor-
rection using the group method of data handling is shown in 
Fig. 1 (Song and Wang 2017, Yin et al. 2019).

Data from the INS and GNSS are jointly processed. First, 
the difference between INS and GNSS data is computed, 
yielding a mixture of INS and GNSS errors. Further, the 
mixture of errors z is processed using the NKF, and the 
computed estimate is fed to the output of the INS correc-
tion scheme. At the same time, the INS error model is con-
structed using the measurements by the GMDH algorithm. 

Fig. 1  INS correction scheme using the group method of data han-
dling. INS is the inertial navigation system, GPS is the receiver, NKF 
denotes the nonlinear Kalman filter, GMDH stands for group method 
of data handling, C is a criterion to indicate the divergence of the 
estimate process (Selezneva and Neusypin 2016), � is the navigation 
information, x is the INS errors vector, z is the measurement vector, 
x̂ is the estimated vector, and x̃ is the vector of the estimation errors
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The INS errors obtained through the GMDH algorithm are 
compared with the estimated ones. Further, if the criterion 
on block C is satisfied, that implies that the estimation pro-
cess diverges, then the constructed INS error model replaces 
the one in the NKF.

Let us briefly discuss the GMDH algorithm. The first 
stage compares the predefined basic functions with the 
measurement sample. The best functions are selected based 
on selection criteria. At the next stage, the selected functions 
are crossed, and model candidates are formed, which are 
again subjected to selection criteria. As a result of such an 
iterative process, the error model is obtained. It is necessary 
to note that the criterion of the estimation process divergence 
must be included in the structure of the NKF.

Let us consider another way of NKF implementation. The 
state equation of the estimating process x has the form

where � is the input noise and f (⋅) denotes the well-known 
nonlinear vector function. The a priori probability density 
of vector x is pap

(
x0
)
 . The measurement equation has the fol-

lowing form:

where n is the measurement noise, and S(⋅) is the nonlinear 
vector function. Vector y includes INS and GNSS data as 
well as measurements of pseudoranges and pseudo velocities 
computed in the GNSS receiver.

The optimal filtering is based on the theory of statisti-
cal solutions of the Stratonovich equation (Kurtz et  al. 
1995; Chechkin and pavlyukevich 2014). The following 
Stratonovich equation describes the change in the posterior 
probability density:

where c is the normalization constant, Yk
0
= ||y1, y1 … yk

|| 
are measurements, p

(
yk|xk

)
 denotes the one-step likelihood 

function, p
(
xk−1|Yk−1

0

)
 denotes the posterior probability den-

sity, and p
(
xk|xk−1

)
 denotes the transition probability density 

of the Markov process, determined by the stochastic model 
of this process (4).

In practice, the solution of the Stratonovich equation is 
an extended Kalman filter (EKF) (Wan and Nelson 2001; 
Lee and Ricker 1994). The EKF is the recurrent algorithm 
for estimating x̂k and the error covariance Dx,k . The EKF 

(4)xk = f (xk−1, �k−1)

(5)yk = S(xk, nk)

(6)
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|

|

|
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|
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∞

∫
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|
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)
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)

dxk−1, p
(

x0
|

|

|

Y0
0

)

= pap
(

x0
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is much easier to implement than numerically solving the 
Stratonovich equation in a computer system.

The EKF algorithm consists of two stages: prediction 
and update. During the first stage, the prediction (extrapo-
lation) of the state vector is computed using the following 
expression

where fk−1
(
x̂k−1

)
 for each component of x is determined 

separately. The variance matrix D is computed as follows

During the second stage, the corresponding updates for 
the predicted state vector and its covariance are computed 
through the following set of equations:

The two ways of NKF implementation were presented. 
The first way, shown in Fig. 1, is used in the correction 
scheme, for instance, for a maneuverable aircraft, since it 
could adapt the model. The second one could be used for 
an aircraft with low-speed dynamics, for instance, transport 
aircraft. The advantage of the second one is the much sim-
pler realization on the onboard computer. It also has satis-
factory accuracy of the estimates with a good choice of the 
INS error model (Shen et al. 2016; Neusypin et al. 2018). 
The comparison of those two NKF implementations will 
be shown later based on the experimental data obtained in 
flight.

Group method of data handling

The GMDH approach for constructing models assumes that 
information that characterizes the dynamics of an object 
of interest is contained in measurements (represented as 
an observation table or a set of data samples) Ivakhnenko 
(1970). This approach uses a criteria ensemble for model 
selection from a set of candidates. Moreover, it does not 
require any a priori identification of the object regularities. 
To construct a mathematical model in such a way, we must 
specify the selection criteria for model selection. Eventually, 
the model with optimal complexity, determined by these 
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criteria, is selected automatically. The minimum value of 
the selection criteria determines the adequacy of the con-
structed model. The right choice of selection criterion allows 
to exclude unneeded, random, and non-informative state 
variables and to determine their interrelation in an optimal 
way. According to Leibniz, “if half of the art of the inventor 
consists in gradually increasing the complexity of combina-
tions (or in building a generator of sentences), then it can be 
argued that the second half is in the selection of selection 
criteria” (Selezneva et al. 2017).

The selection criteria make the choice of the model unam-
biguous. In GMDH, all optimization issues are efficiently 
solved by numerical algorithms only based on given training 
and test data sets. No information on the probability distri-
bution is needed. As a threshold self-selection, various heu-
ristic criteria are consistently used: correlation coefficient, 
the criterion for convergence of arguments, the criterion of 
matrix condition, and, mainly, the minimum mean squared 
error (MMSE) criterion (Csorgo et al. 1981; Rao 1980).

Basic principles for designing GMDH algorithms.
A full description of an object could be formalized as 

follows

and should be replaced with multiple private descriptions:

where m = C2
n
 , p = C2

m
 and so on. The GMDH algorithms 

must then satisfy the following two conditions:

(10)Φ = f1(x1, x2, x3, ..., xi)

(11)y1 = f1
(
x1, x2

)
, y2 = f1

(
x1, x3

)
, … ym = f1

(
xn−1, xn

)

(12)
z1 = f1

(
y1, y2

)
, z2 = f1

(
y1, y3

)
, … , zp = f1

(
ym−1, ym

)

1. The function f1(⋅) is the same in all equations. Eliminat-
ing the intermediate variables makes it possible to obtain 
an “analog” of the full description.

2. The analog must correspond to the full description. By 
comparing the analog and the actual complete descrip-
tion in its general form, one can find equations for con-
structing the coefficients of the complete description.

When these conditions are satisfied, GMDH makes it pos-
sible to find estimates for the coefficients of the complete equa-
tion, even if their number is large. To be able to reuse the data 
in the algorithm, it is necessary to solve the interpolation prob-
lem up to the end at each level of the multi-row system. All 
GMDH algorithms have this property. In GMDH, the rule of 
threshold self-selection is used as well as the idea of selection 
during the compilation of mathematical algorithms (Shen et al. 
2016; Ivakhnenko 1971). This led to the fact that ineffective 
combinations discarded in the first rows of self-selection can-
not provide optimal combinations of the next row if they were 
skipped further. The GMDH algorithm diagram is presented 
in Fig. 2.

Let us now present the application of GMDH for the INS 
error model construction. The measurements are formed using 
the difference between the INS and GNSS data. The construct-
ing model using the GMDH algorithm looks like

where the estimated coefficients are

(13)
y1(dV) = b01 + b11x1 + b21x3 + b31x

2
1
+ b41x

2
3
+ b51x1x3

(14)y3(e) = b03 + b13x3 + b23x4 + b33x
2
3
+ b43x

2
4
+ b54x3x4

b01 = 5.86;b11 = −3.27;b21 = 4.21; b31 = 0.0013;
b41 = −0.0804; b51 = 0.08

Fig. 2  Diagram representing the 
general idea of the GMDH algo-
rithm. After the first and second 
rows of selection, the choice 
from all precision solutions is 
made, and the optimization is 
performed. Optimization results 
are then used in the first row of 
selection
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These equations are obtained with the help of the 
GMDH algorithm using real measurements obtained dur-
ing the flight experiment. The presented model is used 
in the NKF as a system model, i.e., the INS error model. 
Thus, the INS error model of a particular INS during the 
current flight experiment has been obtained. The efficiency 
of using such an INS error model in the NKF using data 
sets from flight experiments will be shown later.

In the INS correction scheme, the Rao–Cramer inequal-
ity can be used as an indicator of estimation process con-
vergence (Belavkin 2013; Trees and Bell 2007; Tichavsky 
et al. 1998; Simandl et al. 2001). The well-known criterion 
has the following matrix form

or in a scalar form

Here � is a coefficient put in for practical reasons, and it 
determines the level of covariance permissible values, above 
which the estimation process is considered divergent. How-
ever, during model construction by the GMDH algorithm, 
this criterion is applicable only for directly measured state 
variables. In the case of a reduced one, when not all states 
are directly measured, the formulation of the criterion could 
be done as described below.

Formation of reduced measurements 
for directly unmeasured state variables

We use a nonlinear INS error model, obtained with the 
help of GMDH, to generate measurements directly of not 
measured state variables. The divergence criterion r con-
tains the variance of the reduced noise that must be deter-
mined. The estimate of x1 with the scalar measurement of 
z can be formulated as:

The measurement equation for the (n + 1)th moment has the 
form

The state xn + 1 in terms of its value at time moment n + 1 
can be expressed as follows:

(15)vkv
T
k
≤ �HkPk|k−1HT

k
+ Rk

(16)v2
k
≤ �Pk|k−1 + rk
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(18)zn+1 = Hxn+1 + vn+1

and substituting the expression for xn + 1 into the measure-
ment equation zn+1 , one can obtain

and then substitute in this equation the expression for x1 , 
one can get

The last equation reformulates the measurement equations 
in terms of the noise variables.

Let us introduce the notation:

where v0
1
 denotes the reduced measurement noise. With 

(24), it is possible to estimate the reduced measurement 
noise level for each vector component x . The variance of 
the reduced measurement noise is used in the divergence 
criterion (15). A diagram with this criterion is shown in 
Fig. 3. In the BGRM block, the reduced measurements are 
computed according to (21). Eventually, after a sequence of 
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n measurements ( n measurement sub-ticks), we can directly 
estimate the entire vector x.

The proposed adaptive NKF operates as follows. First, 
the difference between the INS and GNSS measurements 
is calculated (the signals are synchronized). Then, a mix-
ture of INS and GNSS errors is passed to the input of the 
NFK and to the input of the Measurement Formation Block 
(MFB) (measurements are collected to a data set). After the 
MFB, the signal is sent to the GMDH for building INS error 
models. The INS error from the GMDH block is compared 
with the one from the NKF estimate. If the error difference 
exceeds the predefined value in the K block, then the GMDH 
model is used in the NKF instead of the a priori computed 
model. If the error difference does not exceed the threshold, 
then the NKF operates with an a priori computed model. 
The estimate from the NKF is fed into the output signal of 
the INS to compensate for the INS error. The diagram of the 
described algorithm is presented in Fig. 4.

Experimental research

A wide range of motion of a balloon provides a unique 
opportunity to use multisystem multifrequency orbital infor-
mation (including from sub-horizon satellites) to study the 
radio navigational field and subtle effects of inertial navi-
gation (Selezneva et al. 2017) and gravimetry. We used a 
multifunctional autonomous measurement system (MAMS) 
to collect different navigational data during the flight experi-
ment. The MAMS allows to collect data from GNSS from 
6 independent receivers, INS data, and ionospheric data 
in real time. The autonomous operation time of MAMS is 
about 4–6 h, and the working temperature range is from − 30 
to + 60 °C. The MAMS equipment is shown in Fig. 5.

The balloon was equipped with rigidly mounted INS and 
GNSS devices, a fiber-optic gyroscopic system with NovA-
tel SPAN-CPT accelerometers, as well as several GNSS 
receivers from Russian domestic producers. These receivers, 
smart antennas, and base stations operate on all frequencies 
of GLONASS, GPS, BDS, Galileo, and wide-range GNSS 
augmentation.

The advantages and the uniqueness of the experiment 
of the balloon are that its dome is radio transparent (radio 
signals are passed through the dome undistorted), and its 
movements are smooth and depend on the wind speed in 
different layers of the atmosphere. In addition, its load and, 
consequently, the whole equipment is almost free from 
mechanical vibrations in comparison with other carriers. It 
must be noted that the vertical balloon position is possible 
to control. The pre-flight assembly of MAMS is presented in 
Fig. 6. The general diagram of a multifunctional autonomous 
measurement system is shown in Fig. 7.

The phase centers of satellite antennas form a measure-
ment basis moving in space (Fig. 8). There are 15 non-
repeating bases in the polyhedron, some of which are inter-
nal. In fact, this is a complex case of the GNSS “Moving 
Base” mode, which allows to collection of a large statistical 
dataset for accuracy estimation of the functioning of mul-
tisystem, multifrequency satellite equipment in dynamics.

Before the experiments were performed, special prepara-
tion needed to be done. This preparation includes flight plan 
design and analysis of the meteorological conditions, such as 
cloudiness, visibility, wind speed, and direction. Eventually, 
an approximate flight route and altitude are planned. Based 
on that preparation, the resulting flight routes, projected on 
the earth surface, from experiments done on September 14 
and December 16 of 2018 are shown in Fig. 9. The experi-
ment was carried out at low air temperatures (− 22–25 °C). 
The installation of MAMS equipment on board the balloon 
is shown in Fig. 10.

Experiment results

The navigational data are obtained using GNSS and INS 
measurements. Data processing was done by NovAtel 
Waypoint Inertial Explorer software. The collected meas-
urements were processed in the RTKLIB software for the 
experiment performed on September 14, 2018, and in the 
software RTKLIB and WayPoint Inertial Explorer for the 
experiment conducted on December 16, 2018 (Takasu and 
Yasuda 2009; Ferreira et al. 2020). For the last one, the data 
from the separately located inertial system SPAN-CPT6 was 
used. The altitude of the combined phase center of MAMS 
during flight is shown in Fig. 11. A multisystem smart 
antenna installed at the launch site was used as a relative 
reference base station.

Fig. 3  A functional diagram with scalar criterion, where BGRM is 
the block for generating reduced measurements, S is the divergence 
criterion, and K is the key
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Fig. 4  Proposed adaptive NKF. The coefficients for the reduced 
measurements are computed using the obtained measurements. Then 
reduced measurements are computed, and the GMDH algorithm is 

applied. If the divergence criteria are satisfied, the process stops. If 
not satisfied, the INS model is additionally estimated via NKF

Fig. 5  MAMS schematic diagram. 1, 2 are the JSC PA UOMZ MP-8 
and MP-10 smart antennas; 3, 4 are the AMSA-3 antennas with the 
base module; 5 is the UniStrongG970-II smart antenna (GNSS data 
up to 50 Hz); 6, 7 are the GNSS antennas NovAtelGG702-1.02; 8 is 
the MAMS control module; 9 is the inertial navigation system (INS) 
NovAtelSPAN-CPT6; 10 is the web camera for photo and video 
recording of the experiment

Fig. 6  MAMS pre-flight setup. Two GNSS antennas, GPStation-6 
and SPAN-CPT are shown here. Additional Power supply via battery 
is also presented
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The balloon speed was also computed from the meas-
ured data set in the RTKLIB software and shown in Fig. 12. 
Velocities computed by processing inertial data in the Iner-
tialExplorer software are presented in Fig. 13. Accelerations 
computed from processing inertial data in the InertialEx-
plorer software are shown in Fig. 14. The dynamics of the 
root mean square error obtained from processed inertial data 
in the InertialExplorer software is presented in Fig. 15.

Fig. 7  General functional 
scheme of the MAMS complex. 
DD denotes double differences; 
EKF is the extended Kalman 
filter, and PVA is the position, 
velocity, and altitude

Fig. 8  Phase centers determined by the GNSS. Top: baselines deter-
mined by the GNSS antenna phase centers. Bottom: space-moving 
stereometric figures consisting of baselines determined by the GNSS 
antenna phase centers

Fig. 9  Experimental Routes. Route of September 14, 2018 (top), and 
December 16, 2018 (bottom)
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The results of a full-scale experiment are shown in 
Figs. 16 and 17. The balloon keeps its spatial position in the 
absence of wind. Up to the time moment 1, the navigation 
complex operates as part of the INS; GNSS and adaptive 
NKF as illustrated in Fig. 16. At the period, defined between 
moment 1 and moment 2, there was no GNSS data, and only 
INS measurements are presented. As a result, the INS errors 
significantly increase, as illustrated in Figs. 16 and 17.

Those Figs. 16 and 17 illustrate change in balloon coordi-
nates ( ΔX , ΔY  , ΔZ ) obtained as the output of the combined 
GNSS/INS system. After 40 s, the GNSS signal appears 
again, and the INS error model construction process is 
started using GMDH and adaptive NKF. Then this model is 
used in adaptive NKF to correct the navigational data. From 
moment 3 onward, the navigational data became satisfac-
tory, meaning that the accuracy of determining coordinates 
became about 0.10 m. It took 45 s from moment 2 to achieve 
such accuracy.

Figure 15 illustrates the results obtained when the 
INS error model was constructed by GMDH with data 
from previous experiments for this particular INS. An 
adaptive NKF with this prepared model is used in the 
combined GNSS/INS system. Figure 17 presents results 
where the model is refined during the assessment process. 
Here GMDH is adjusting the initial model during the time 
from 60 to 65 s. It took 32 s to achieve desired positioning 
accuracy within 0.10 m from moment 2. Thus, using the 
INS error model constructed in advance, which is used 
in the adaptive NKF, reduces the time required for the 
navigation complex to enter the normal operating mode. 
The INS estimation error with this model is shown in 
Fig. 16 as line 2.

The model constructed by GMDH algorithm from the 
measurements, which is formed from 40 s, has the form:

where 
b01 = 0.52, b11 = −1.13, b21 = 86.34, b31 = 1.02,
b41 = 0.007, and b51 = −0.201.

Using the INS error model constructed by GMDH 
within the two ways of NKF realization demonstrated 
good estimation accuracy. An exception is line 2 shown 
in Fig. 16 where the adaptive NKF is used. The INS errors 
model is somewhat different from the real INS errors; 
therefore, it is necessary to adjust the model during the 
operation of the INS. The second method of NKF imple-
mentation cannot perform model adjustments during its 
operation; therefore, it showed an accuracy of 15% worse.

y1(�x) = b01 + b11x1 + b21x3 + b31x
2
1
+ b41x

2
3
+ b51x1x3

Fig. 10  MAMS-fixed equipment MR-8 and MR-10 are shown at the 
top and additional GNSS antenna and computation module are shown 
at the bottom

Fig. 11  Graph of the MAIS GNSS equipment combined phase 
center heights. The data obtained from the experiment on September 
14, 2018 is shown on the top, and the data from the experiment at 
December 16, 2018 is shown at the bottom
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We made the onboard tests with different correc-
tion approaches to compare numerical effectiveness and 
INS correction accuracy. The results of these tests are 

Fig. 12  Velocities obtained after data processing. Velocities obtained 
on September 14, 2018 (top), and December 16, 2018 (bottom). E–W, 
N–S, and U–D are the velocities in east–west, north–south, and Up–
Down directions in units of m/s. Some outliers in velocity plots are 
also presented

Fig. 13  Velocities obtained after the processing the data with Iner-
tialExplorer. Red line: east direction, green line: north direction, blue 
line: up direction, and brown line: horizontal speed

Fig. 14  Accelerations obtained after data processing with InertialEx-
plorer. Red line: east direction, green line: north direction, blue line: 
up direction

Fig. 15  RMS changing in InertialExplorer. Red line: RMS value. 
green line: standard deviation

Fig. 16  Results of a full-scale experiment. Lines 1, 2, and 3 denotes 
INS errors in X, Y, and Z coordinates respectively. Three vertical 
lines added to highlight the time moments, where the behavior of the 
combined GNSS/INS is changed
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presented in Table 1. INS correction accuracy with the 
proposed adaptive NKF modification is slightly higher 
than just NKF and almost equal to the approach where 
NKF is combined with a genetic algorithm for model 
construction. However, the required RAM amount for the 
proposed correction approach is significantly lower than 
the one with the genetic algorithm.

Conclusions and discussions

An INS algorithmic correction by GNSS data using an 
adaptive NKF is considered in this research. To increase 
the accuracy of the navigational data, the INS error model 
is used for correction in adaptive NKF. We proposed the 
INS/GNSS correction scheme via adaptive NKF with the 
measurement formation procedure and criterion of the 
estimation process divergence. The adaptive NKF uses 
the INS error model obtained from GMDH during the 
pre-flight test for a particular INS. The INS error model 
computed by the GMDH algorithm during flight highly 
depends on aircraft maneuvers and requires consistently 
constructing a new INS error model. The proposed idea 
to use the pre-built INS error model from pre-flight test 
results is to decrease the number of calculations that have 

to be done on the onboard computer. Using the INS error 
model obtained via GMDH compared to the classical INS 
error model increases the accuracy of the resulting navi-
gational data. This is possible because GMDH could con-
sider the specific features of a particular INS in the model.

The effectiveness of the proposed algorithmic solutions 
is proved by the data obtained from two flight experiments. 
The results of the flight experiments showed a reduction in 
the time for the combined GNSS/INS system to enter the 
normal operating mode when using a pre-built INS error 
model in the adaptive NKF.

Funding Ministry of Education and Science, #0705-2020-0041, Kon-
stantin Neusypin

Data availability The obtained during the experiments data sets were 
not published and not available online but could be provided upon 
request.
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